TRANSMISSION DEVELOPMENT PLAN 2023-2040

Table of Content

CHAPTER 1: BACKGROUND	
1.1 NGCP as a Regulated Entity	
1.2. Transmission Grid Performance	3
1.3 Introduction to NGCP's Transmission System	
Network	5
1.4 TRANSMISYON 2040	6
CHAPTER 2: EXISTING PHILIPPINE GRID	
2.1 Grid Profile	7
2.2 Dependable Capacity Mix	
2.3 Luzon Transmission Network	
2.4 Visayas Transmission Network 2.5 Mindanao Transmission Network	
CHAPTER 3: PLANNING PROCESS AND DRIVERS FO	
GRID DEVELOPMENT	
3.1 TDP Process Flow	
3.2 Planning Criteria 3.3 Project Drivers	
3.4 System Peak Demand	
3.5 Generation Capacity Addition	
3.6 Project Clustering	
CHAPTER 4: GRID RESILIENCY	
4.1 Resiliency Policy	
4.2 Asset Replacement	
CHAPTER 5: TECHNOLOGY APPLICATION	
5.1 Battery Energy Storage System	
5.2 Adoption of SMART Grid Technologies	
5.3 Static Synchronous Compensator	
5.4 Other Technology	
CHAPTER 6: RENEWABLE ENERGY	45
6.1 Philippine Renewable Energy	
6.2 Offshore Wind Potential in the Philippines	
6.3 Floating Solar in the Philippines	
6.4 Green Energy Auction Program	
6.5 Grid's Readiness with the Penetration of	
Renewable Energy Resources	49
CHAPTER 7: 69 KV FACILITIES	50
7.1 Background	50
7.2 Age Distribution of 69 kV Lines Nationwide	
7.3 Way Forward	
CHAPTER 8: LUZON TRANSMISSION OUTLOOK	
8.1 Transmission Outlook for 2023-2030	
8.2 Transmission Outlook for 2031-2040	
CHAPTER 9: VISAYAS TRANSMISSION OUTLOOK	
9.1 Transmission Outlook for 2023-2030	
9.2 Transmission Outlook for 2031-2040	
CHAPTER 10: MINDANAO TRANSMISSION OUTLOO	
10.1 Transmission Outlook for 2023-2030	
10.2 Transmission Outlook for 2031-2040	
CHAPTER 11: ISLAND INTERCONNECTION	
11.1.1 Existing Island Interconnections	.137
11.2 Transmission Backbone and Major Island	100
Interconnection Projects	
11.3 Small Island/Off-Grid Interconnection 11.4 Potential Small Island Interconnections	
CHAPTER 12: OPERATION AND MAINTENANCE	. 140
	1 4 0
PROGRAM	
12.1 CAPEX Program	. 148

12.2 Metering Facilities	
CHAPTER 13: SYSTEM OPERATIONS	164
13.1 Developmental Objectives	164
13.2 Situational Analysis	164
13.3 Summary of CAPEX Costs	167
13.4 Strategies	168
13.5 Telecommunications	170
13.6 SCADA Programs	172
13.7 Network Protection and Power Quality	176
APPENDICES	178
Appendix 1 – Ancillary Service Agreement	
Procurement Plan	
Appendix 2 – Generation and Load Distribution P	'er
Area	181
Appendix 3 – Prospective Power Plants	184
Appendix 4 – Private Sector Initiated Power Proje	ects
Appendix 5 – Summary of Asset Lives	197
Appendix 6 – Power Restoration Highway	
Appendix 7 – Abbreviations and Acronyms	200
Appendix 8 – Contact Details	203

BACKGROUND

1.1 NGCP as a Regulated Entity

With the enactment of the Philippines Electric Power Industry Reform Act of 2001 (EPIRA) into law in June 2001, the Philippine Electricity Industry was subdivided into four sectors: generation, transmission, distribution, and supply. The transmission and distribution sectors are regulated. Generation and supply or the aggregators for the sale of electricity, on the other hand, operate under a competitive environment.

As the Transmission Network Provider (TNP), NGCP is regulated by the Energy Regulatory Commission (ERC) under the Performance-Based Regulation (PBR). The PBR methodology is outlined in the Rules for Setting Transmission Wheeling Rates or RTWR that strengthens financial incentives to provide efficient service.

NGCP is persistently committed to the following international standards to advance the Vision and Mission

1.2. Transmission Grid Performance

The RTWR provides for the establishment of a Performance Incentive Scheme (PIS) with rewards and penalties applied to the extent that the actual level of performance by the Regulated Entity exceeds or falls short of performance measures that have been established and approved, for implementation, by the Regulator within a certain regulatory period.

In accordance with the regulatory reset process for the Fourth Regulatory Period (4th RP) under Article VII of the RTWR, a new PIS was develop specifying the service quality measures/indices as well as the target level of performance applied to the transmission grid. However, the 4th RP reset process has been delayed.

of the corporation and currently on the process of recertification for the following:

- Risk Management International Organization for Standardization (ISO) 31000:2018
- Quality Management System (QMS) ISO 9001:2015
- Environmental Management System (EMS) ISO 14001:2015
- Occupational Health and Safety Management System (OHSMS) – ISO 45001:2018
- Business Continuity Management System (BCMS) ISO 22301:2019
- Information Security and Management System (ISMS) – ISO 27001:2013

Notwithstanding the delay in the reset process, NGCP continuously monitors the performance of the transmission grid using the 3rd RP ERC-approved indices.

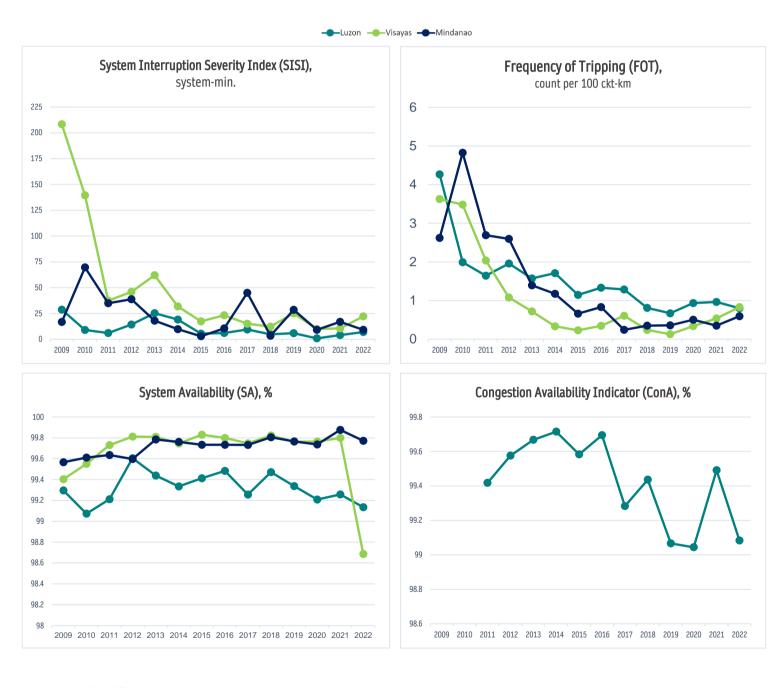
- System Interruption Severity Index (SISI)
- System Availability (SA)
- Voltage Limit Compliance (VLC)
- Frequency of Tripping (FOT)
- Congestion Availability Indicator (ConA)
- Ancillary Services Availability Indicator (ASAI)

The 2022 performance of the transmission grid covering the period 01 October 2021 - 30 September 2022 is shown in Table 1.1.

Performance Indicator	System Interruption Severity Index, system-min.	Frequency of Tripping, count per 100ckt-km	System Availability, %	Frequency Limit Compliance, %	Voltage Limit Compliance, %	Congestion Availability Indicator, %	Ancillary Services Availability Indicator, %
Luzon	6.9938	0.8025	99.1341	100.0000	99.9989	99.0832	28.3904
Visayas	22.266	0.8310	98.6869	99.9930	99.9930		20.3253
Mindanao	9.2328	0.5918	99.7712	99.9987	99.9943		57.7112

Table 1.1: 2022 Performance of Transmission Grid

NGCP continues to improve the overall performance of the transmission system since taking over the


transmission business from the government and commencing commercial operations in 2009. While there

are decreases in performance indices year-on-year, NGCP has continuously performed over and above the targets based on the 3rd RP-approved limits. This is a

Reliability Indicators

As a regulated entity, NGCP provides Transmission Services to all users of the grid and is bound by the Transmission Reliability Standards under Chapter 3 of the Philippine Grid Code (PGC). Correspondingly, power result of NGCP's relentless efforts to continuously upgrade, expand, and improve transmission facilities.

interruptions caused or initiated by transmission lines and equipment that resulted in the loss of service to grid users were included in the evaluation.

Power Quality

Quality of service is measured with reference to system voltage and frequency. The system is normally managed such that frequency is maintained within the allowable operational limits of 59.7 and 60.3 Hz. On the other hand,

system voltages are monitored individually at connection points with the customers to ensure that voltages are within the allowable operational limits of +/- 5% of the nominal value is not exceeded.

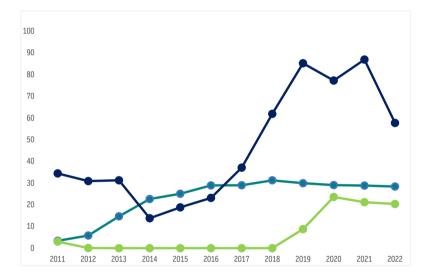


Figure 1.1: 2022 Performance of Transmission Grid

1.3 Introduction to NGCP's Transmission System Network

The country's transmission systems are composed of 500 kV, +/- 350 kV HVDC, 230 kV, 138 kV, 115 kV, and 69 kV facilities. As the sole TNP, NGCP plays a vital role in a safe and reliable transmission of electricity in response to system requirements and market demands. It continues to improve the reliability, adequacy, security, and stability of the grid in the three major regions of the Philippines: Luzon, the Visayas, and Mindanao.

As the System Operator of the Philippine power grid, NGCP balances the supply and demand of electricity to efficiently serve all its customers – power generators, private distribution utilities (DU), electric cooperatives, government-owned utilities, economic zones, and directly-connected customers. It is responsible for dispatching the power plants and transmitting the generated power to various DU which, in turn, deliver the electricity at a lower voltage to households and other endusers. NGCP also operates and maintains metering facilities and provides technical services, particularly system studies, and operation and maintenance of customer facilities. NGCP also determines the levels of Ancillary Services (AS) required for each grid based on the results of assessment and simulation studies. These reserve levels which are variable according to network dynamics are meant to meet PGC-prescribed grid reliability and security requirements. Appendix 1 shows the NGCP Ancillary Service Agreement Procurement Plan (ASAPP).

1.4 TRANSMISYON 2040

NGCP is committed to build a strong and reliable power transmission network through various programs and projects that prioritize network development. Shown in Figure 1.2 is the medium (2020-2022) and long-term

(2023-2040) Power Sector Roadmap involving the Transmission Sector based on the Philippine Energy Plan (PEP) 2020-2040 of the Department of Energy (DOE) issued in October 2021.

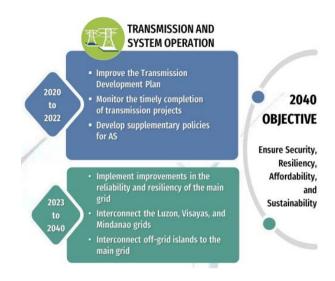


Figure 1.2: Power Sector Roadmap (Transmission) from DOE's PEP 2020-2040

In support to the PEP's Power Sector Roadmap, NGCP formulated the **"TRANSMISYON** 2040". i.e.. Transmission Resiliency and Augmentation for Nationwide Smart Grid Management through Interconnected Systems, Organization and Networks 2040. It highlights NGCP's goal for every Regulatory Period and the steps that will be taken to achieve each goal: enabling capacity-sharing through grid interconnection; transitioning to the smart grid one substation at a time;

completion of grid looping configuration and mandatory redundancy; grid resilience through asset refresh; and full harmonization of Renewable Energy (RE) resources and alignment realization to AmBisyon Natin 2040. A more detailed Asset Administration complements the specific goal for each of the succeeding four Regulatory Periods towards the end of the planning period in 2040.

104%

INCREASE

2.1 Grid Profile

25000

20000

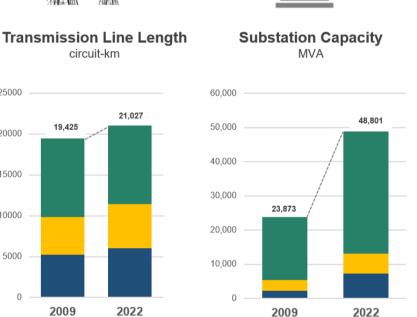
15000

10000

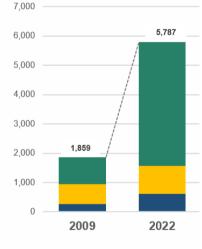
5000

0

A total of 48,801 MVA substation capacity and 21,027.00 circuit-km are accounted for in the transmission assets being managed by NGCP, as shown in Figure 2.1. In addition, a total of 5,787 MVAR from Capacitor and shunt


reactors have been installed in appropriate locations in different parts of the grid to ensure that voltages across the network are within the levels prescribed in the PGC.

circuit-km

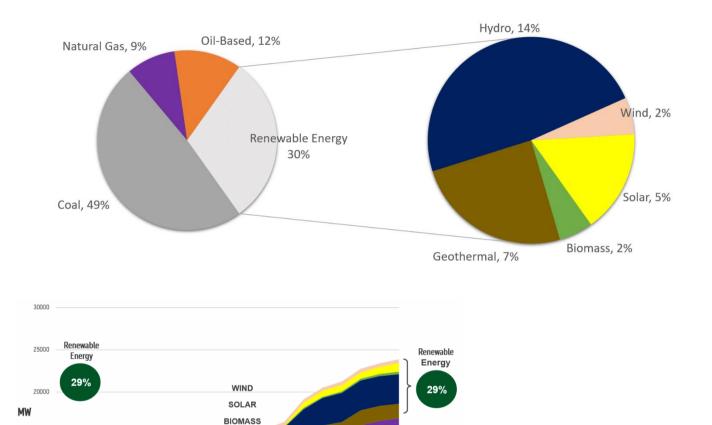

19,425

21,027

Capacitors & Reactors MVAR

📕 Luzon 📕 Visayas 📕 Mindanao

2.2 Dependable Capacity Mix


2009

The dependable capacity indicated in the following section is based on the DOE's List of Existing Power Plants (Grid-connected) as of 31 December 2022.

2022

The Philippines has a total dependable capacity of 23,598 MW excluding off-grid generators. Coal-fired power plants (CFPP) recorded the largest share with 11,504 MW, while Natural gas and Oil-based accounted for 2,081 MW and 2,860 MW, respectively. On the other hand, RE-based plants recorded 1,763 MW for Geothermal, 3,444 MW for Hydro, 382 MW for Biomass, 1,150 MW for Solar, and 412 MW for Wind. The Luzon, the Visayas, and Mindanao Grids have 16,320 MW, 3,340 MW, and 3938 MW dependable capacities, respectively.

Figure 2.2 shows the total Philippine dependable capacity mix while in Figure 2.3 shows the historical Dependable Capacity Mix versus the Generation Mix respectively based on DOE data.

0 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

HYDRO GEOTHERMAL

NATURAL GAS

15000

10000

5000

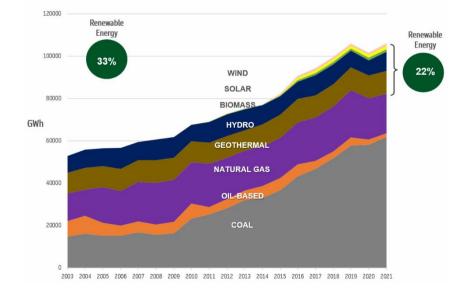
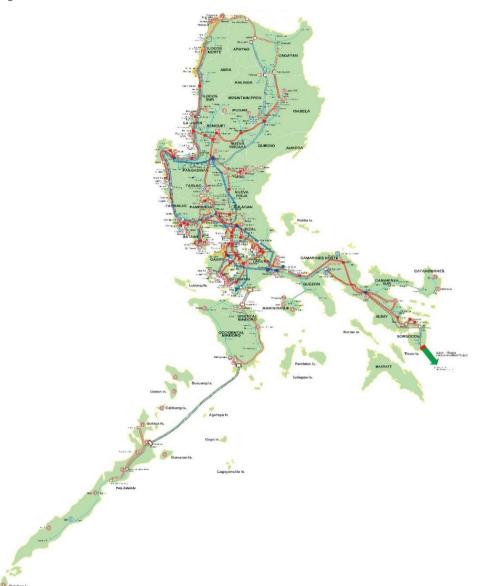



Figure 2.4 Existing Generation Mix (GWh)

2.3 Luzon Transmission Network

The bulk generation sources in the Luzon Grid are in the northern and southern parts of Luzon Island while the load center is in the Metro Manila area. About 50% of the total demand in Luzon is drawn in Metro Manila. Because of this system configuration, NGCP's transmission backbone must have the capability to transfer bulk power from both the northern and southern parts of Luzon to the Metro Manila area.

Northern Transmission Corridor

The transmission corridor consists of several flow paths for transferring power from the generation sources located in northern Luzon to Metro Manila. The 500 kV Double Circuit (DC) Bolo–Nagsaag–San Jose is rated at 2,850 MVA per circuit and is capable of transferring more than 2,200 MW generation from Masinloc and Sual Coal-Fired Power Plant (CFPP) to Metro Manila. Composed of six districts in northern Luzon while the southern part has three districts:

The Bolo and Nagsaag 500 kV Substations (SS) are the receiving ends of generation from the north. The power is then delivered to Metro Manila mainly via Mexico and San

Jose SS. Other underlying paths are the 230 kV Transmission Line (TL):

- Labrador–Botolan–Olongapo 230 kV Single-Circuit (SC) Line
- Olongapo-Hermosa and Olongapo-Subic-Hermosa 230 kV Lines
- San Manuel–Concepcion–Mexico DC line
- San Manuel–Pantabangan–Cabanatuan–Mexico SC line

The San Manuel–Concepcion–Mexico 230 kV Line is an alternate corridor, which also caters the generation capacity of the Hydro Electric Power Plant (HEPP) delivering power to San Manuel 230 kV SS.

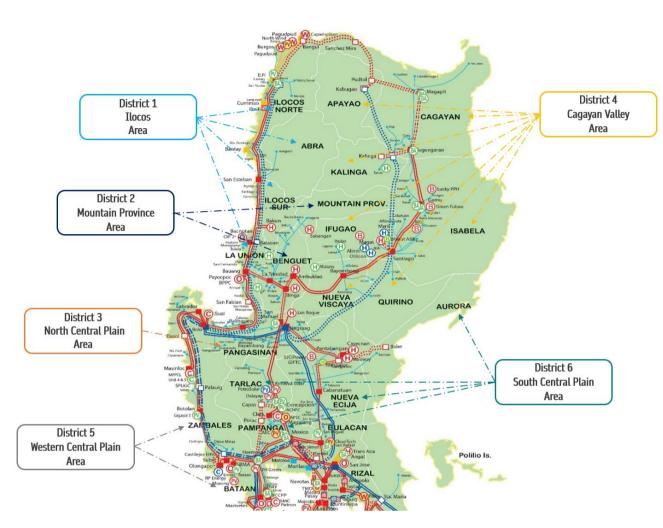


Figure 2.4: North Luzon Transmission Corridor

Metro Manila

As the center of commerce and trade, a further increase in demand within Metro Manila is expected, thus requiring the expansion of existing Substations and the building of new ones. The National Capital Region (NCR) accounts for more than half of the total load in Luzon but only relies on the import of power coming from the north and south Luzon.

One unique geographical feature of Metro Manila is its narrow land area between Manila Bay and Laguna Lake, which is only about 10 km wide. Thus, it will be challenging to secure the right of way to implement additional transmission lines.

The development of Antipolo, Navotas, and Pasay 230 kV SS Projects will cater to the demand increase in Metro Manila. Presently, there are three main load sectors within Metro Manila:

- Sector 1 is served through Quezon, Paco, Marilao (Duhat), and San Jose SS. Both Paco and Marilao (Duhat) SS are MERALCO-owned
- Sector 2 is served through Taytay and Doña Imelda 230 kV SS
- Sector 3 is served through Muntinlupa and Las Piñas 230 kV SS

The major supply lines for both Quezon and Taytay are the DC 230 kV line from San Jose as these Substations rely heavily on the supply from San Jose 500 kV SS.

In the southern part of Metro Manila, the power requirements are being drawn from Dasmariñas 500 kV SS and power plants directly connected to the 230 kV system. Las Piñas is connected through a DC 230 kV radial line from Dasmariñas, while Muntinlupa has a fourcircuit supply line from Biñan.

Southern Transmission Corridor

The southern portion of the 500 kV transmission backbone stretches from Naga SS in Bicol Region to Tayabas, Quezon. Tayabas is also connected to San

Jose thereby completing the link between the north and south 500 kV transmission corridors.

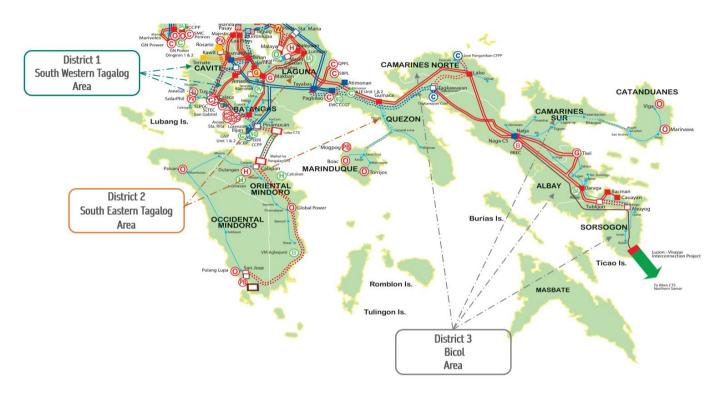


Figure 2.3: South Luzon Transmission Corridor

The 500 kV backbone segment from Pagbilao to Naga SS is currently energized at 230 kV. The Naga SS is also the termination point for the High Voltage Direct Current (HVDC) Interconnection System (commissioned in 1998) that could allow the exchange of power for up to 440 MW between Luzon and the Visayas Grids.

The 500 kV backbone in the south facilitates the transfer of about 3,300 MW from Ilijan Natural Gas, Pagbilao, and

2.4 Visayas Transmission Network

The Visayas transmission system is divided into five different sub-grids: Panay, Negros, Cebu, Bohol, and Leyte-Samar. The sub-grids have existing AC interconnections with effective transfer capacity as of March 2023 as follows: Leyte-Cebu (1x200 MW, 1x240 MW), Cebu-Negros (2x90 MW), Negros-Panay (1x180 MW), and Leyte-Bohol (1x90 MW). These submarine cables provide the capability of sharing excess generation

Quezon Power Philippines Ltd. Company (QPPL) CFPP. The 230 kV transmission system in Batangas and Laguna area caters more than 3,100 MW total generation capacity of Calaca CFPP and other Natural Gas Plants (San Lorenzo, Sta. Rita, and Avion).

From Tayabas SS, the 500 kV backbone also stretches to Dasmariñas SS which serves as a drawdown SS for the loads in the south of Metro Manila.

between islands to accommodate the Visayas' growing demand.

The transmission backbone of the Visayas Grid extends from Allen Cable Terminal Station in Samar, all the way to Nabas SS in Panay. This power delivery system comprises approximately 5,378 circuit kilometers of transmission lines.

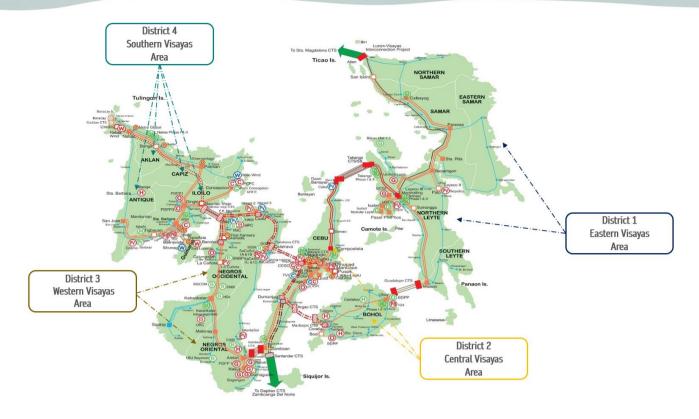


Figure 2.4: Visayas Transmission Corridor

Eastern Visayas is composed of Leyte and Samar Islands. Leyte remains the power supplier to Samar and Bohol Islands through the Ormoc–Babatngon and Ormoc–Maasin 138 kV TL, respectively. Also, Leyte has a 230 kV interconnection to Cebu enabling the other islands to source power from cheaper geothermal resources. Leyte is the site of 667 MW geothermal resources that comprise about 20% of the total dependable capacity in the Visayas.

Central Visayas is composed of Cebu and Bohol Islands. Cebu can be well considered as the major load center of the Visayas Grid. In 2022, it has a peak load of 1,065 MW which accounted for 45.6% of the grid's total demand. Bohol has the lowest peak load among sub-grids at 97 MW in 2022.

In the Island of Negros, the load center is in Bacolod City in the northern part, while the bulk of generation,

2.5 Mindanao Transmission Network

A large portion of power being used in the island is a combination of renewable and conventional power plants located in Lanao and Misamis Oriental for northern Mindanao, and in Davao Area for southern Mindanao. To enable bulk power transfer between northern and southern Mindanao, the new 230 kV backbone is implemented. In terms of transmission system configuration, Mindanao is relatively a robust grid. However, the security of the island remains a serious concern, thus NGCP is still facing major challenges in

composed mostly of geothermal power plants, is in the southern part. There are also many generating power plants in Northern Negros which are composed mostly of solar and biomass power plants. There is a total of 287.6 MW solar generation capacity in Negros Island which accounted for 71.2% of the grid's total solar generation capacity.

Panay Island has many large coal power plants Panay Energy Development Corporation (PEDC) 317.4 MW in the southern part while Palm Concepcion Power Corporation (PCPC) 135 MW in the southeastern part. Panay has become less reliant on power imports from other islands via the 230 kV Negros–Panay Interconnection (initially energized at 138 kV) and, most of the time, exports power to Negros.

implementing its operations and construction of key transmission projects. Another vital issue in the Mindanao grid is the looming low voltage in Zamboanga City. The long and radial configuration of transmission lines supplying the area, and the continuous increase in demand entails low voltage that cannot be resolved by new transmission facilities alone. In this case, a power plant must be constructed near Zamboanga City to balance the reactive power requirement of the system.

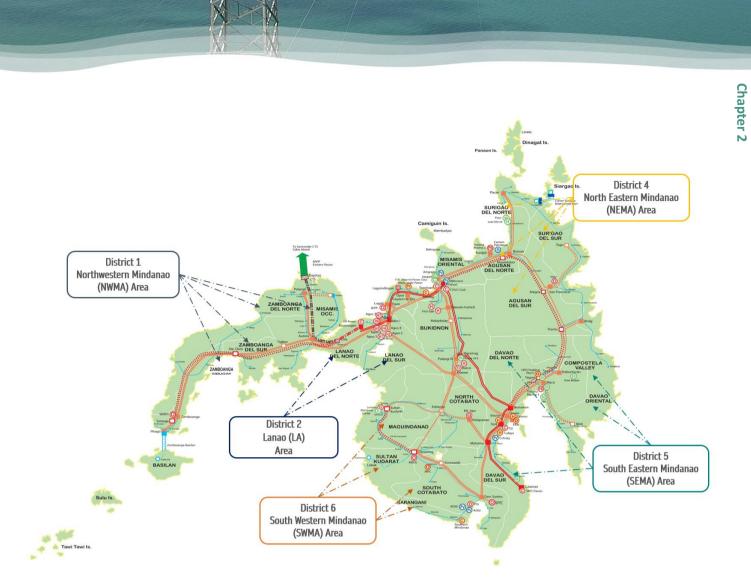


Figure 2.5: Mindanao Transmission Network

PLANNING PROCESS AND DRIVERS FOR GRID DEVELOPMENT

TRANSMISSION DEVELOPMENT

15

3.1 TDP Process Flow

DOE Inputs

DOE's annual System Peak Demand Forecast and Generation Capacity Addition Line-up are the two major inputs in the TDP. In relation to the transmission network analysis, the system peak demand forecast shall be broken down and forecasted into individual transformer loads. On the other hand, NGCP's own non-coincident substation peak loading forecasts are used in determining load-end substations (LES) expansion requirements.

Stakeholders Engagement

One of the requirements of EPIRA in the preparation of the TDP is to conduct consultations with the electric power industry participants. NGCP regularly conducts Customers Interface Meetings to gather inputs from the Distribution Development Plans (DDP) of DU, expansion programs of Generator Companies, and other directly connected customers. In addition, coordination meetings with other stakeholders are also conducted.

TDP Update

The inputs from the DOE and the electric power industry participants are used to determine the system requirements of the grid for the next 18 years. This involves the conduct of load flow, short-circuit, and transient stability studies using special software in power system simulation. The assessments are made with reference to the planning criteria and limits prescribed in the PGC.

Consultation with Stakeholders

This step is part of the consultation process with the stakeholders as required by the EPIRA. Stakeholders are given the opportunity to raise comments and suggestions on the proposed transmission network developments contained in the TDP.

Submission to DOE

As provided in the EPIRA and its Implementing Rules and Regulation (IRR), the TDP shall be submitted to the DOE for approval and for integration with the Power Development Program (PDP) and the PEP.

Figure 3.1: TDP Process Flow

3.2 Planning Criteria

System Assessment.

Taking off from the model of the existing baseline case of the transmission network, the system planners refer to the following:

- The latest list of generation capacity additions
- Utilize the updated system peak load forecast and disaggregate into per substation transformer level

Develop the network model for the year covered planning horizon by the TDP.

Simulation.

Various generation dispatch scenarios are considered to provide a deterministic approach while providing sensitivity in the process as well as in the result in the simulation. This includes simulation considering singleoutage contingency which can be very beneficial in determining the necessary or needed projects. This is to assess whether the NGCP Facilities would be able to support the system requirement and power transfer capability in the instance of the worst scenario would take place.

To also evaluate the market impact, NGCP continuously develops its market model utilizing a market-based approach program towards probabilistic approach as additional enhancements of long-term transmission planning. As there are many uncertainties in the future, the market simulation will aim to establish a range of plausible system condition -based scenarios.

Table 3.1 Generation Dispatch Scenarios for each Grid

	LUZON Dispatch S	cenarios	
Maximum North Wet Season	Maximum South Dry Season	Typical Generation S	cenario Other Generation Scenario
All generation facility outputs in the northern part of the grid are set to their maximum capacities	All generation facility outputs in the southern part of the grid are set to their maximum capacities power plants of peak		vels of dispatch of concentrated power
	VISAYAS Dispatch S	Scenarios	
Maximum East	Maximum V	Vest	Maximum Cebu
All generation facilities in Leyte and Sam Islands are set to their maximum capaciti while the conventional powerplants in Neg and Panay Island are set to minimum. Generation facilities in Cebu is also maximi	es, Islands are set to their maxin ros the conventional powerplant Island are set to minimum. G ized. Cebu is also max	num capacities, while s in Leyte and Samar eneration facilities in kimized.	All generation facilities in Cebu Island are set to their maximum capacities, while the conventional powerplants in Leyte and Samar Island are set to minimum. Generation facilities in Panay and Negros are also maximized.
	MINDANAO Dispatch		
Maximum North Dispatch Scenario	Dry Season Dis Scenario		Other Future Scenarios
Generation from the north, especially tho coming from hydro plants are maximize thereby causing the highest load to the transmission lines, which transmit power to load centers in the south, e.g., Davao and G Santos areas	d hydro plants from the north all available power plants, p o the plants are assumed to be dis	is considered, thus particularly peaking patched to augment	Development of thermal generation in Southeastern Mindanao Linking of the Visayas and Mindanao Grids, through the implementation of the proposed Mindanao-Visayas Interconnection Project.

Evaluation of Results and Project Proposals.

Based on the resulting TL loading, grid transformer loading, fault level at the Substations, voltage profile, and system response to disturbance, the system planners shall provide solutions or mitigations. The following are the solutions or mitigations that can be proposed:

- New TL project
- TL upgrading project
- New SS
- PCB Replacement Program Installation of Reactive Power Compensation Equipment
- Transmission Network Reconfiguration Project

One important consideration in the identification of projects is the overall long-term transmission development for each grid. This is where the line-up of projects in the given period is established as well as the required implementation period. Some projects may have to be implemented by stages or may be initially energized at a lower voltage level while waiting for the completion of other components, particularly for backbone and looping projects but will remain consistent with the target end-state of the grid. The selected solution from the network analysis, as well as the conduct of economic assessment, will form part of the documentation of the TDP.

In the case of expansion plans for Load-End Substations (LES), a direct comparison of the existing SS capacity and the load forecast would already result in the determination of capacity addition projects to meet load growth, both during normal and single-outage contingency conditions of the transformers. The transformer addition projects, however, would also consider the sizing and age of the existing units, optimization, and the space availability in a SS. Moreover, the development of a separate new substation is also an option in lieu of further expanding the transformer capacity at the existing locations. Under this case, system simulation studies will be required to fully assess the need and impact of load transfer or load reallocation to the new substation in the grid.

The TDP 2023-2040 will be used as a reference in the Regulatory Reset application and subsequent applications of NGCP. While the TDP already provides a long list of

projects needed by the network, project prioritization and project ranking will be another important process and a separate exercise during the capital expenditure (CAPEX) application. This will involve further assessment on the probability of contingency events, assessment of the impact if a project is not implemented yet, and full documentation of economic analyses.

The major transmission projects for the period 2023-2040, with components shown in Chapters 8, 9, and 10, were based on the selected implementation scheme after considering all the technically feasible alternatives. The identification of project components would involve line routes, SS sites evaluation and selection, and other initial field investigations. A least-cost development approach was also applied consistent with various NGCP Planning and Design Standards utilizing the cost estimate database derived from recently completed projects and prices of materials and equipment obtained through vendor consultation.

- Load Growth. This pertains to ensuring transmission facility adequacy and projects that address the projected overloading, which will occur even during normal conditions or no outage condition, are given topmost priority.
- **Generation Entry**. This pertains to the accommodation of new power plant connections to the grid and bulk generation capacity additions that include conventional and renewable energy power plants, which usually drive new transmission backbone development.
- System Reliability and Security. This pertains to projects that will ensure the reliability and security of the Grid as prescribed in the PGC. This includes projects that provide N-1 contingency, network security, and replacements for defective and ageing assets. The assets' conditions are evaluated to come up with effective planning for the replacement program to ensure that unwarranted asset failures will be prevented or mitigated. Procurement of spares for the

HVE, secondary devices, and TL equipment is regularly planned to ensure stable system availability.

• Power Quality and Technology. This involves the installation of equipment that will aid in operating the grid within the PGC-prescribed limits. This also involves projects related to new and developing technologies that have a substantial application to the operation and maintenance of the transmission system, which includes, online monitoring of High Voltage Equipment (HVEs), centralized operation of substations, and the use of robots among others.

3.4 System Peak Demand

The annual System Peak Demand (SPD) forecast is one of the important input parameters in the preparation of the TDP.

3.4.1 Historical Demand for Electricity

The total SPD (in MW, non-coincident sum) of the Philippines shows a consistent upward trend from 2005 to 2019. However, SPD in 2020 declined by 1.92% or 299MW across all Grids – Luzon, the Visayas, and Mindanao. This can be largely attributed to the economic downturn brought about by the COVID-19 pandemic. The implementation of community quarantine in varying stringency levels beginning 15 March 2020 and lasting until the end of the year limited movement across the

- **Policy Direction**. This pertains to DOE-issued policies to ensure the reliability, quality, and security of supply of electric power and other government or regulatory compliances related to safety, environmental, and technical standards. These include projects involving island/off-grid interconnection, Smart Grid, Grid Resiliency, Energy Storage System, Competitive Renewable Energy Zones (CREZ), among others.
- Market Operation Support. This pertains to projects related to the integration of grid control and the unification of market operation

The demand forecast for the TDP 2023-2040 adopted the SPD projections of the DOE Based on the Gross Domestic Product (GDP)-to-elasticity approach.

country and gravely affected the operations of commercial and industrial sectors causing the decline in demand. As of December 2022, demand was able to recover as the Government loosen up quarantine restrictions and rolled out its COVID-19 vaccination program. A 4.93% growth in demand was recorded in 2021 followed by a 3.49% growth in 2022. The Average Annual Compounded Growth Rate (AACGR) is at 3.95% for 2005 to 2022.

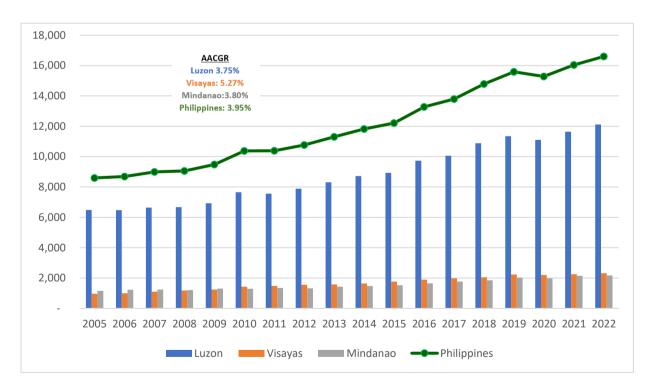
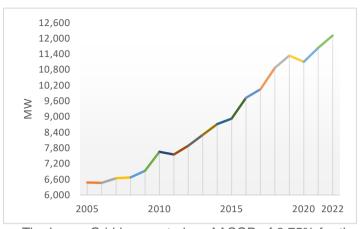
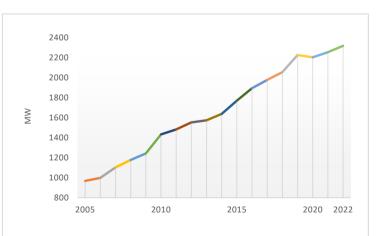
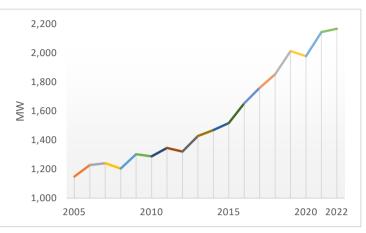



Figure 3.3: Summary of Historical Demand per Grid (2005-2022), in MW* *Includes embedded generation monitored by NGCP


3.4.2 Luzon Historical Demand

The Luzon Grid has posted an AACGR of 3.75% for the period 2006-2022. Consistent steady growth has been recorded for the Luzon Grid except for the decrease in demand observed in 2006 and 2011. This was due to the reduction in the power consumption of MERALCO for the two periods brought about by the effect of the global financial crisis in 2006 and the effect of the La Niña phenomenon experienced in 2011. MERALCO's demand accounts for at least 70% of the total SPD in Luzon. Further, demand growth in 2010 has been unprecedented (10.51%) - similar double-digit growth was also observed in MERALCO's franchise area. This was attributed to increased economic activity brought about by election spending and the higher-than-average growth in GDP for the year. Also, the prolonged hot temperature experienced during the summer months brought about by El Niño has contributed to the unusual


3.4.3. Visayas Historical Demand

The aggregate demand in the Visayas Grid has posted an AACGR of 5.27% for the period 2006-2022. The year 2010 brought a significant increase in the demand for electricity in the Visayas. Compared with the SPD recorded in 2009, Visayas Grid grew by a record high of 15.31% in 2010. This was due to the improved economic activities and increased reliance on the power supply from the Grid of existing large customers with selfgeneration. In addition, the realization of 346 MW increase in generation capacity coming from Cebu Energy Development Corporation (CEDC), KEPCO Salmon Power Corporation (KSPC), and PEDC helped boost the supply-demand situation in 2010. However, this growth was not sustained as the system grew only at an average rate of 4.11% for the next two years (2011-2012). In 2013, the total demand in Visayas posted a meager increase of only 1.35%. This is due to the effect of Typhoon Yolanda that hit the region in November and caused a significant decrease in power consumption. Visayas demand grew by 4.07% year after the Typhoon Yolanda and the demand continued to rise from 2014 to 2019. Decreased demand of 1.03% or 23 MW was recorded in 2020 in line with the onset of the COVID-19 pandemic. Load centers Cebu, Iloilo and Bacolod City were placed under longer ECQ compared to other areas in upsurge in the Luzon SPD due to the increased utilization of air-conditioning units. Note, however, that this demand growth has not been sustained in 2011. In fact, SPD has fallen by 1.36%. Demand was quick to recover though, registering a 4.46% growth in 2012. From 2013 to 2019, Luzon posted an average annual growth of 5.36% or 507 MW. In 2020, Luzon SPD posted yet another decline of 2.12% or 241MW. This was observed beginning March of 2020 when Luzon was placed under community quarantine. Load centers Metro Manila. Central Luzon and CALABARZON (Cavite, Laguna, Batangas, Rizal and Quezon) were placed under the most stringent Enhance Community Quarantine (ECQ) for three months to prevent the spread of COVID-19. The government ordered under the ECQ that only essential establishments and industries shall operate during the guarantine period. This resulted the temporary closure of large commercial, in manufacturing, and industrial establishments over Luzon and Metro Manila, coincidentally occurred during the summer months when peak demand of Luzon were recorded for the past 10 years. Further, Metro Manila remained in General Community Quarantine (GCQ) by the end of 2020. The implementation of community quarantines resulted to lower electricity demand in 2020. The implementation of community guarantines resulted to lower electricity demand. In 2021 and 2022, demand was able to recover, registering a 4.84% and 4.06% growth respectively, as the Government loosen up quarantine restrictions and rolled out COVID-19 vaccination program. Across all grids, Luzon Grid recorded the highest demand growth in 2022.

Visayas—the effect of which was evident in the recorded decreased demand of large DU serving these areas and nearby provinces for the period of April to December in 2020 compared with the level recorded during the same period in 2019. Similar with Luzon, demand of Visayas Grid was able to recover and recorded 2.29% increase in 2021 and 2.84% in 2022.

3.4.4. Mindanao Historical Demand

Mindanao Grid has posted an AACGR of 3.80% for the period 2006-2022. After recording high annual growth rates from 2002 to 2004 (an annual average of 7.36%), demand growth has been sluggish from 2005 to 2010 due to the overall reduced power requirement from large non-utility customers. From 2005 onwards, the historical growth in the Mindanao Grid has been volatile with alternating periods of rise and decline.

Drop-in demand occurred in the years 2005, 2008, 2010 and 2012. The year 2005 was characterized by reduced demand from DU while 2008 was characterized by the large decrease in the demand of non-utility customers, possibly a direct effect of the global

3.4.6 Forecasted for TDP 2022-2040

The power demand for the country is expected to grow at an AACGR of 6.06% for the period 2022-2025, 6.73% for 2026-2030, and 6.49% for 2031-2040. It is projected that Mindanao will have the highest AACGR compared with the two other Grids. Mindanao is forecasted to reach an AACGR of 7.81% for 2022-2040 while the Luzon and Visayas Grids at 6.04% and 7.11%, respectively. Table 3.2 shows the projected demand disaggregated per O&M District based on the transformer peak demand coincident with the System Peak. It was derived from the DOE Forecast as of 19 August 2021 based on gross generation level. The power demand for the country is expected to grow at an AACGR of 6.06% for the period 2022-2025, 6.73% for 2026-2030, and 6.49% for 2031-2040. It is projected that Mindanao will have the highest AACGR compared with the two other Grids. Mindanao is forecasted to reach an AACGR of 7.81% for 2022-2040 while the Luzon and Visayas Grids at 6.04% and 7.11%,

financial crisis which adversely affected exporting industries. On the other hand, suppressed generation impeded demand growth in 2010 and 2012. This was due to the El Niño phenomenon that hampered hydropower generation, which comprised about half of the Grid's installed capacity. Mindanao power demand recovered in recent years and grew by 8.10% in 2013 then maintained at around 3.10% growth rate in the next two years. In 2016, a record high 8.98% demand growth was registered in Mindanao Grid. More than 800 MW additional generation capacity was also added to Mindanao. In 2017 and 2018 the demand for Mindanao further improved and posted an increase of 6.46% and 5.28% respectively. In 2019, a 160 MW demand increase was recorded in the Mindanao Grid; the highest in terms of absolute increase in the past 14 years. Similar with Luzon and Visayas, Mindanao SPD declined by 1.76% or 35MW in 2020. ECQ was also implemented in Davao, load center in Mindanao, for some time and was under GCQ by the end of 2020. Large DUs in Mindanao, including Davao, recorded decreased demand for the period of April to December in 2020 compared with the level recorded during the same period in 2019. In 2021, Mindanao recorded the highest percent growth in demand, across all grids, recording 8.42% growth. A 1.07% increase in demand was recorded in 2022.

respectively. Table 3.2 shows the projected demand disaggregated per O&M District based on the transformer peak demand coincident with the System Peak. It was derived from the DOE Forecast as of 19 August 2021 based on gross generation level.

The implementation of community quarantine, starting March 2020, throughout the country due to the CoViD-19 pandemic has greatly affected the country's social and economic activities. High power demand expected to occur in the summer months of 2020 was not realized. With this, the DOE adopted NEDA's low GDP economic growth assumption in updating the load forecast. The SPD forecast endorsed by the Department to NGCP contains the same levels used in the TDP 2021 to 2040.

A comparison of the projected load and generation capacity per area per grid is also available (see Appendix 2). Table 3.2 Summary of Projected Demand per District (MW)

	Area	2023	2024	2025	2030	2035	2040
	LUZON	13,125	13,918	14,769	20,069	27,13	36,101
	MERALCO	8,826	9,123	9,502	11,531	13,978	16,954
1	NCR	5,736	5,929	6,175	7,494	9,084	11,018
2	North	486	502	523	635	770	934
3	South	2,604	2,692	2,804	3,402	4,124	5,002
	North Luzon	3,270	3,644	4,000	6,469	10,237	15,074
1	Ilocos	251	272	294	497	763	1,104
2	Mt. Province	144	156	169	273	409	587
3	North Central	351	392	429	710	1,165	1,692
4	Cagayan Valley	354	383	421	695	1,041	1,537
5	West Central	652	732	806	1,303	2,075	3,148
6	South Central	1,453	1,643	1,813	2,904	4,676	6,875
7	North Tagalog	64	66	68	88	108	131
	South Luzon	1,029	1,151	1,267	2,069	2,924	4,073
1	Batangas/Cavite	507	566	621	1,025	1,366	1,741
2	Laguna/Quezon	140	155	167	250	350	503
3	Bicol	381	430	479	795	1,207	1,829
	VISAYAS	2,691	2,891	3,111	4,423	6,280	8,827
1	Panay	469	504	542	771	1,094	1,538
2a	Cebu	1,283	1,378	1,483	2,108	2,993	4,208
2b	Bohol	115	123	133	189	268	377
3	Leyte-Samar	395	424	456	649	921	1,295
4	Negros	430	462	497	706	1,003	1,410
	MINDANAO	2,395	2,584	2,789	4,138	6,088	8,751
1	North Western	249	267	290	475	751	1,140
2	Lanao Area	142	146	154	226	324	457
3	North Central	601	625	653	997	1,413	1,967
4	North Eastern	159	169	183	298	470	709
5	South Eastern	683	743	844	1,226	1,864	2,748
6	South Western	561	634	664	916	1,267	1,730
	Philippines	18,211	19,392	20,669	28,631	39,506	53,679

3.4.7 Demand Projections for Substation Capacity Addition

The demand projections for SS expansion take off from the per meter forecast undertaken by NGCP. Forecast energy deliveries per metering point are derived from historical trends and/or information as to the potential expansion or contraction of demand of Grid-connected customers. Inputs are sought from customers in this bottom-up process to incorporate their operation plans.

Projected monthly energy deliveries (in MWh) to metering points connected to a given transformer are then summed

3.4.8 Demand Projections for Transmission Expansions The SPD projection for each Grid is used in determining the necessary transmission expansion projects. However, for the figure to be usable in the power system analysis software, it has to be broken down into individual transformer loads. First, the embedded generation during system peak is subtracted from the SPD to come up with the non-embedded peak. Applicable plant station use, and system loss were applied to the generation level to up. Accounting adjustments for technical losses and substation use to this sum, the monthly per transformer energy delivery forecast (in MWh) is derived. The forecast transformer peak (in MW) is then calculated by applying the appropriate load factor to these energy delivery projections. This transformer peak becomes the basis for adding transformer capacities at the substations.

disaggregate the forecast down to the NGCP transformers. Then, the individual transformer maximum demand projections during the month when the system peak usually occurs (as determined in the previous section) are used to establish the percent share to arrive at the nonembedded peak that will be assumed for a specific transformer.

3.5 Generation Capacity Addition

This section shows the additional capacities and proposed generating plants in Luzon, the Visayas, and Mindanao Grids.

The DOE has also provided the list of generating plants that have clearance to undertake System Impact Study (SIS) but are not yet included in the DOE's list of Private Sector Initiated Power Projects (PSIPP) since the reports on the status of their development are not yet submitted. This list will fall under the new classification named as the Prospective Projects. Thus, there will be three generation project classifications, as follows:

- Committed These are projects that have service contracts in place, are in the development/commercial stage and have reached financial closure already and have been declared as "committed" by the DOE.
- Indicative Projects with service contracts, in the development/commercial stage but with no financing yet.

 Prospective – Projects with completed SIS as of March 2023 (See Appendix 3). These projects are not included in the official list of DOE's PSIPP.

It is worth noting that the proponents should regularly provide the DOE with their plans and updates regarding the status of their projects for monitoring and inclusion in the official list of DOE's PDP Generation Projects. Proponents are advised to regularly coordinate with the DOE's Electric Power Industry Management Bureau.

New generating power plants are linked to the grid every year to increase and maintain the demand-supply balance in the system. Table 3.3 shows the list of grid-connected additional capacities in 2022 based on DOE's list of of existing power plant as of 31 December 2022.

Power Plant	Location	Installed Capacity (MW)	Dependable Capacity (MW)	Connection Point
LUZON				
GNPower Dinginin Supercritical CFPP - Unit 2	Sitio Dinginin, Barangay Alasasin, Mariveles, Bataan	725.0	668.0	GN Mariveles 230 kV SS (Interim Connection) Mariveles (Alas-asin) 500 kV SS
Hypergreen Rice Husk-fired	Brgy. Taal, Bocaue, Bulacan	12.0	10.0	MERALCO Facility
Sta. Rita Solar PP(Phase 3B)	Mt. Sta. Rita, Subic Bay Freeport Zone	34.4	27.5	SBMA 230 kV SS
Bataan Solar Energy Project	Barangay Batangas-II, Mariveles, Bataan	4.4	3.7	PENELCO Facility
Arayat-Mexico Solar PP	Barangay San Antonio, Arayat, Pampanga	72.0	51.0	Mexico-Clark 69 kV TL 2
Alaminos BESS	Brgy. San Andres, Alaminos, Laguna	60.0	60.0	Bay 69 kV SS
VISAYAS				
Isabel Modular Diesel Ancillary Service Power Plant	Barangay Libertad, Isabel, Leyte	86.3	70.7	Cut-in along Isabel – Pasar 138 kV Line 2 (Interim) Isabel 138 kV SS
TUBIG HEPP	Taft, Eastern Samar & Hinabangan, Samar	15.9	15.9	Tap connect along Paranas-Taft 69 kV line
San Carlos Biopower (SCBP)	Circumferential Road, San Carlos Economic Zone II, Barangay Palampas, San Carlos City, Negros Occidental	20.0	18.0	Interim connection in Cadiz-San Carlos 69 kV TL. To be transferred to San Carlos 69 kV SWS upon completion of the CNP3
South Negros Biopower	Barangay Cubay, La Carlota City, Negros Occidental	25.0	22.4	Tap connect along Bacolod - San Enrique 69 kV Transmission Line
North Negros Biopower	Barangay Sta. Teresa, Manapla, Negros Occidental	25.0	22.4	Tap connect along Bacolod - Cadiz 69 kV TL
Kabankalan BESS	Barangay Binucuil, Kabankalan, Negros Occidental	22.5	22.5	Kabankalan 138 kV SS
Kabankalan PH2 BESS	Barangay Binucuil, Kabankalan, Negros Occidental	12.2	12.2	Kabankalan 138 kV SS
MINDANAO				
MATI BUNKER-C*	Libudon Road, Lower Dawan, Mati City, Davao Oriental	11.0	11.0	Embedded in DORECO-1, within 69 kV network
Mindanao 3 (M3) Binary Geothermal Plant	Barangay Ilomavis, Kidapawan, North Cotabato	3.7	3.0	Kidapawan SS
TMI Hybrid Diesel-Battery System	Maco, Davao de Oro	49.0	49.0	Maco 138 kV SS

Table 3.3 List of Grid-Connected Additional Capacities in 2022

Total Committed Capacity

Total Indicative Capacity

Figure 3.4 Capacity Summary of DOE's List of PSIPP as of 28 February 2023 Note: BESS not included

In addition to the existing capacity, Table 3.4 shows the capacity summary of DOE's List of PSIPP as of 28 February 2023 for Luzon, the Visayas, and Mindanao with associated transmission projects that will accommodate generation entry and the respective completion Date. A detailed list of PSIPP is shown in Appendix 4.

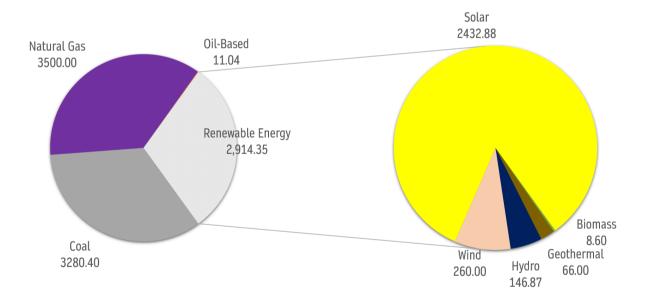
It can be noted that the list includes small capacity plants which may not actually connect directly to NGCP. For relatively small capacity power plants connecting to the distribution system, the main impact is a slight reduction in the power being drawn by the DU from NGCP Substations and would not generally require reinforcement in the transmission network.

Table 3.4 Luzon Committed	Power Plants and Associated Transmission Projects	
	*with SIS	

Proposed Major Power Plants	Capacity (MW)	Commissioning Year	Connection Point	Associated Transmission Project	ETC/ Completion Date
COAL					
Petron Corporation Refinery Solid Fuel-	44.4	Mar 2023	BCCPP 230 kV SS	Mariveles-Hermosa 500 kV TL	Dec 2022
Fired Project – Phase 3*				Hermosa–San Jose 500 kV TL	Aug 2023
Mariveles CFPP*- Phase I, Unit, 1	150	Aug 2023	Mariveles (Alas-asin) 500 kV SS	Mariveles-Hermosa 500 kV TL	Dec 2022
- Phase I, Unit, 2	150	Sep 2023		Hermosa–San Jose 500 kV TL	Aug 2023
- Phase I, Unit, 3	150	Jan 2024			
- Phase I, Unit, 4	150	May 2024			
- Phase II, Unit, 5	150	Dec 2025			
- Phase II, Unit, 6	150	Mar 2026			
- Phase II, Unit, 7	150	Jun 2026			
- Phase II, Unit, 8	150	Sep 2026			
Masinloc Power Plant* - Unit 4	350	Jun 2025	Castillejos 500 kV SS (interim)	Western 500 kV Backbone	Dec 2025
- Unit 5	350	Dec 2025	Palauig 500 kV SS	Stage-2 (Masinloc-Castillejos TL as Ph. 1 in 2024)	

Proposed Major Power Plants	Capacity (MW)	Commissioning Year	Connection Point	Associated Transmission Project	ETC/ Completion Date
A1E CFPP* - Unit 1 - Unit 2	668 668	TBD	Pagbilao 500 kV SS	Pagbilao 500 kV SS Project Pagbilao-Tayabas	Jun 2022 Mar 2025
				500 kV TL	
OIL-BASED SPC – Capas Bunker C-Fired DPP*	11.04	Jun 2023	TARELCO II Facility	None	N/A
NATURAL GAS	11.04	JUII 2025	TARELLO II Facility	NUTE	N/A
EWC CCGT Power Plant*	650	TBD	Pagbilao 230 kV SS	Pagbilao 500 kV SS	Jan 2022
Batangas CCPP - Phase 1, Unit 1*	437.50	Sep 2024	Ilijan 500 kV Switchyard	None	N/A
- Phase 1, Unit 2*	437.50	Sep 2024	Tujali SOO KV Switchyalu	Notie	N/A
- Phase 1, Unit 3*	437.50	Dec 2024			
- Phase 2	437.50	TBD			
BCEI Natural Gas-Fired Power Plant	1,100	Jan 2027	Pinamucan 500 kV SS	Pinamucan-Tuy 500 kV TL	Dec 2031
GEOTHERMAL	1,100	Juli EOET			Dec 2001
Palayan Binary Power Plant*	29	Jun 2023	Bacman 230 kV SS	None	N/A
Tiwi Binary Geothermal Project	17	Dec 2023	Tiwi-C 69 kV SS	None	
Bacman 3 (Tanawon) Geothermal	20	Dec 2023	Bacman 230 kV SS (through		N/A
Project*			Palayan 230 kV Switchyard)		
WIND	80	M 0001	44511100		
Caparispisan II Wind PP	70	Mar 2024	Laoag 115 kV SS	None	N/A
Calatagan Wind PP Balaoi and Caunayan Wind PP - Phase 1	30 80	Dec 2025 May 2023	Tuy 230 kV SS Laoag 115 kV SS	Tuy 500/230 kV SS - Stage 1 Bolo-Balaoan 500 kV TL	Dec 2024 Apr 2032
Battion and Caunayan wind FF - Filase I	00	may LULJ	Laudy IIJ NY JJ	Balaoan–Laoag 500 kV TL	Apr 2032
- Phase 2	30	Aug 2023			p. 2001
- Phase 3	25	Jan 2024			
- Phase 4	25	Dec 2025			
HYDRO	4	4 0000		N	N1 / A
Colasi HEPP* Matuno HEPP*	4 8.66	Apr 2023 Apr 2023	CANORECO Facility Bayombong-Lagawe	None None	N/A N/A
	0.00	Api LOLJ	69 kV TL	NUTC	11/7
Biyao HEPP	0.80	Dec 2023	KAELCO Facility	None	N/A
Mariveles HEPP	0.60	May 2023	PENELCO Facility	None	
Laguio (Laginbayan) Malaki 1 HEPP	1.60	Aug 2023	MERALCO Facility	None	N/A
Labayat River (Lower Cascade) HEPP	1.40	May 2023	Lumban-FAMY-Infanta 69 kV TL	None	N/A
Lalawinan HEPP	3	Dec 2024	Lumban–FAMY-Infanta	None	N/A
		200 202 1	69 kV TL		
Likud 2 HEPP	0.56	Jul 2023	IFELCO Facility	None	N/A
Asin-Hungduan HEPP	9.8	Jun 2024			
Tibag HEPP	5	May 2023	Lumban–FAMY-Infanta	None	N/A
Dangas HEDD	2 /0	Dec 2025	69 kV TL	None	N/A
Rangas HEPP Ibulao HEPP*	2.40 4.5	Apr 2023	CASURECO IV Facility Bayombong-Lagawe	None None	N/A N/A
	110		69 kV TL	none	
Ibulao 1 HEPP*	7.6	Jun 2024		None	N/A
Dupinga HEPP	4.80	Jun 2023	NEECO II A2 Facility	None	N/A
Kapangan HEPP *	60	Dec 2025	Bacnotan 69 kV SS	None	N/A
Daet HEPP Tignoan River (Upper Cascade) HEPP*	5 1.50	Dec 2025 Dec 2025	CANORECO Facility Lumban-FAMY-Infanta	None None	N/A N/A
השווסמוו ונוזיבו (סטטבו במשנמשל) חברר"	1.00	Der LUCD	69 kV TL	ΙΝΟΠΕ	IN/ A
Tubao HEPP	1.50	Dec 2025	LUELCO Facility	None	N/A
Dipalo HEPP	4.15	Dec 2025	Nagsaag-Umingan 69 kV TL	None	N/A
Sablan 1 HEPP	20	Nov 2025	La Trinidad-Calot 69 kV TL	None	N/A
BIOMASS		M. 0000			51.7 A
Isabela Rice husk-Fired BPP FEAC Biogas	5 2.4	May 2023 Aug 2023	ISELCO II Facility PELCO III Facility	None None	N/A N/A
FQBC Biogas	1.2	Jan 2024	MERALCO Facility	None	N/A N/A
SOLAR	1.6				
Pinugay SPP	67.5	Apr 2023	Tap connection along the	None	
			MERALCO-owned Dolores-		
			Teresa-Malaya 115kV Sub-TL		
			which is radially connected to NGCP's Taytay SS		
Currimao SPP	48.11	Jun 2023	Currimao 115 kV SS		

X


X

X

M

Proposed Major Power Plants	Capacity (MW)	Commissioning Year	Connection Point	Associated Transmission Project	ETC/ Completion Date
CGRI Bulacan 2 SPP*	17.6	May 2024	San Rafael 69 kV SS	None	N/A
Ilocos Norte SPP*	87.59	Apr 2023	Laoag 115 kV SS	None	N/A
Raslag III Solar PV PP	13.6	Mar 2023	Mexico-Clark 69 kV TL 1	Clark-Mabiga 69 kV TL Line	
Santa Rosa Nueva Ecija 2 SPP - Phase 1A	33.348	Jul 2023	San Antonio 230 kV SS	San Antonio-Baras 500 kV TL	Dec 2023
- Phase 1B	108.4			(ETC: Dec 2030)	
- Phase 2	171.6				
Cayanga-Bugallon SPP*	75.088	May 2023	Bolo 230 kV SS	Bolo-Balaoan 500 kV TL	Apr 2032
Lal-lo Hybrid SPP	82.48	Sep 2023	Lal-lo (Magapit) 69 kV SS	Santiago-Nagsaag 500 kV TL	
Arayat-Mexico SPP Phase 2	30.93	Apr 2023	Mexico-Clark 69 kV TL 2	None	
PAVI Green Naga SPP	40.40	Dec 2024	Naga-Lagonoy 69kV TL	None	
Talugtug SPP	99.98	Mar 2025	Nagsaag–Umingan 69 kV TL	Nagsaag–Tumana 69 kV TL	Mar 2024
Bulacan 2 SPP		May 2023	San Rafael 69 kV SS	None	
Concepcion 1 SPP - Phase 3	12	May 2023	Concepcion 69 kV SS	None	N/A
- Phase 4	30	Aug 2023	Concepcion 69 kV SS	None	
Concepcion Tarlac 2 SPP	200	Dec 2025	Concepcion 230 kV SS	Mexico-Marilao 230 kV Tl	Aug 2023
				Upgrading	
Tayabas Solar PP	450	Dec 2025	Tayabas 230 kV SS	Taguig-Silang 500 kV TL	
Sapang Balen SPP 1	96.236	Dec 2025	Magalang 230 kV SS	Magalang 230 kV SS	Dec 2027
Sapang Balen SPP 2 - Phase 1	92.799	Dec 2024	Magalang 230 kV SS	Magalang 230 kV SS	Dec 2027
- Phase 2	92.799	Jun 2025			
- Phase 3	92.799	Dec 2025			
- Phase 4	92.799	Jun 2026			
- Phase 5	92.799	Dec 2026			
San Marcelino SPP - Phase 1	224	Aug 2023	Castillejos 230 kV SS	Western Luzon 500 kV	Dec 2023
- Phase 2	80	Aug 2023		Backbone - Stage 1	

Total Capacity: 9,705.79 Based on DOE data as of February 2023

Chapter 3

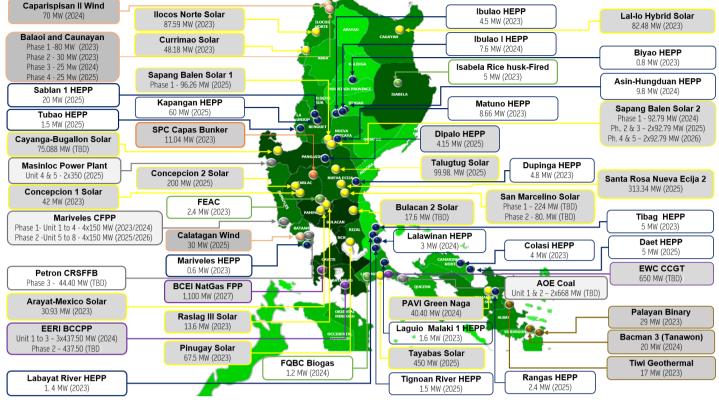


Figure 3.5: Luzon Major Committed Power Plants

Table 3.5 Visayas Committed Power Plants and Associated Transmission Projects *with SIS

Proposed Major Power Plants COAL	Capacity (MW)	Commissioning Year	Connection Point	Associated Transmission Project	ETC/ Completion Date
Palm Concepcion CFPP Unit II*	135	Mar 2025	Concepcion 138 kV SS	Negros – Panay 230 Interconnection L2 CNP 230 kV Backbone Stage 3	Aug 2023
OIL-BASED					
Calbayog Bunker C-Fired DPP*	11.17	Feb 2023	Calbayog 69 kV SS	Visayas SS Upgrading Project 2	Dec 2025
Caterpillar DPP	2	Sep 2023	Lapu-lapu 69 kV SS	None	N/A
Cummins DPP	1	Sep 2023	Lapu-lapu 69 kV SS	None	N/A
Sulzer DPP	5.5	Sep 2023	Lapu-lapu 69 kV SS	None	N/A
GEOTHERMAL					
Northern Negros GPP	5	Aug 2024	Bacolod 138 kV SS	CNP 230 kV Backbone Stage 3	Aug 2023
Biliran GPP - Unit 1	2	Mar 2023			
- Unit 2	6	Nov 2024			
- Unit 3	10	2025			
- Unit 4	10	2026			
- Unit 5	22	2027			
HYDRO					
Timbaban HEPP*	18	Jun 2023	Tap Connection to Panitan-Nabas 69 kV TL	CNP 230 kV Backbone Stage 3	Aug 2023
Igbulo (Bais) HEPP*	8L1	Apr 2023	Cut-in along Sta. Barbara-San Jose 69 kV TL	CNP 230 kV Backbone Stage 3	Aug 2023
BIOMASS					
CASA BPP	8	Dec 2023	Dingle 69 kV SS		
HDJ BPP*	6	Jun 2023	Tap connection along Bayawan- Tadlong 69 kV line	CNP 230 kV Backbone Stage 3	Aug 2023

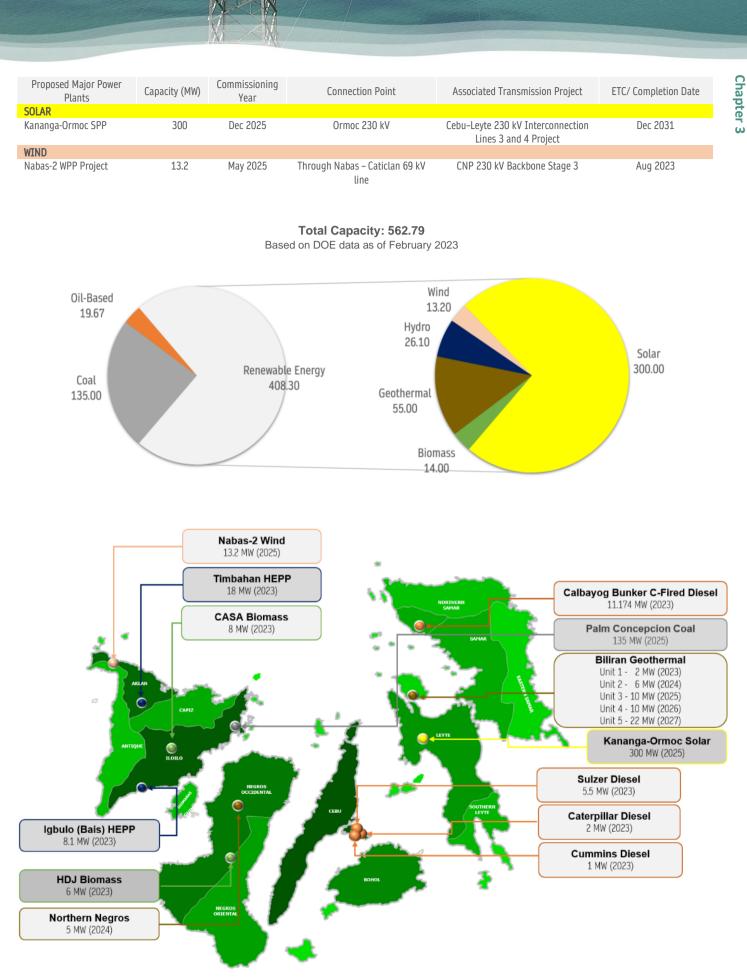
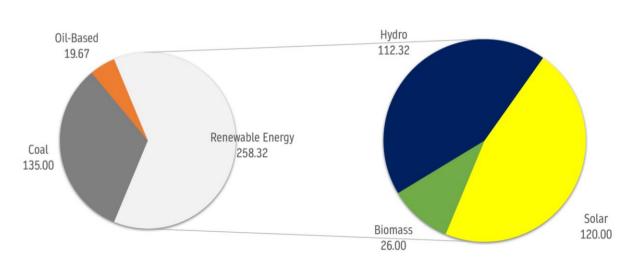



Figure 3.6: Visayas Committed Power Plants

Table 3.6 Mindanao Committed Power Plants and Associated Transmission Projects *with SIS

Proposed Major Power Plants	Capacity (MW)	Commissioning Year	Connection Point	Associated Transmission Project	ETC/Completion Date
COAL					
Misamis Oriental 2 x 135 MW Circulating	270	Mar 2027	Villanueva 138 kV SS	None	N/A
Fluidized Bed CFPP*					
DIL-BASED					
SPC DPP*	11.04	TBD	Mati 69 kV SS	None	N/A
HYDRO					
Lake Mainit*	24.9	Apr 2023	ANECO Facility	None	N/A
Alamada HEPP	3	Jun 2023			
Sipangpang HEPP	1.80	Jun 2023			
Maramag HEPP	2.04	Apr 2023			
Liangan HEPP*	18	Apr 2023	Agus 6-Kauswagan 69 kV Line	None	N/A
Siguil HEPP	14.50	Jun 2023	-SOCOTECO 2's proposed Tinoto Line 3		
Fagpangi HEPP	1.70	Dec 2023			
Osmeña HEPP	1	Dec 2023			
Gakaon HEPP	2.23	Dec 2024			
Maladugao (Upper Cascade) HEPP*	8.40	Jan 2025	Maramag 138 kV SS	None	N/A
Titunod HEPP	3.60	Dec 2024	-		
Malitbog HEPP	3.70	Sep 2024	Villanueva 69 kV SS		
Silo-o HEPP	3.70	Oct 2024	Villanueva 69 kV SS		
Mat-I HEPP	4.85	Nov 2025	Jasaan – Balingasag 69 kV Line		
Clarin HEPP	6.90	Nov 2025	Villanueva 230 kV SS		
Mangima HEPP	12	Jan 2025			
BIOMASS					
CSCCI 10 MW BPP	10	Nov 2023			
DSCCI 10 MW BPP	10	Dec 2023			
LPEC 6 MW BPP	6	Dec 2023			
SOLAR					
Gen. Santos SPP	120	Dec 2025	General Santos 138 kV SS		

Total Capacity: 539.36 Based on DOE data as of February 2023

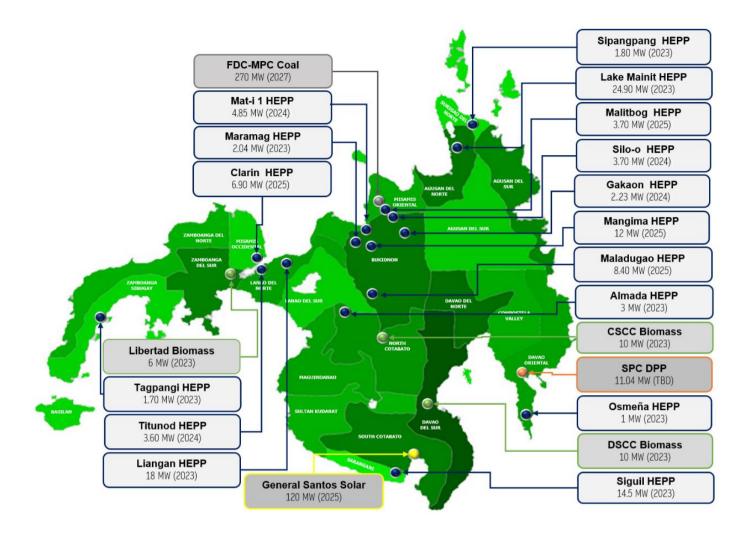


Figure 3.7: Mindanao Committed Power Plants

3.5.1 Potential Power Plant Connection Points

To serve as a guide for generation investors, this section identifies the Substations where new power plants may connect without the need for any significant transmission reinforcement. These recommended connection points, however, should be viewed from a transmission planning perspective and are based on the capability of the existing grid and already considering the completion of ERCapproved projects and without consideration on the following other requirements in generation location siting, particularly for the non-site-specific plants:

- Fuel supply/transport
- Topology/geology of site

- Accessibility
- Availability of area
- Availability of cooling water
- Fresh water supply
- Security
- Environmental/Social concerns

It can be noted, however, that the existing transmission facilities in some generation potential areas barely have excess capacity to cater bulk generation addition. Thus, new transmission backbone developments are a prerequisite for the entry of new large capacity plants.

Chapter 3

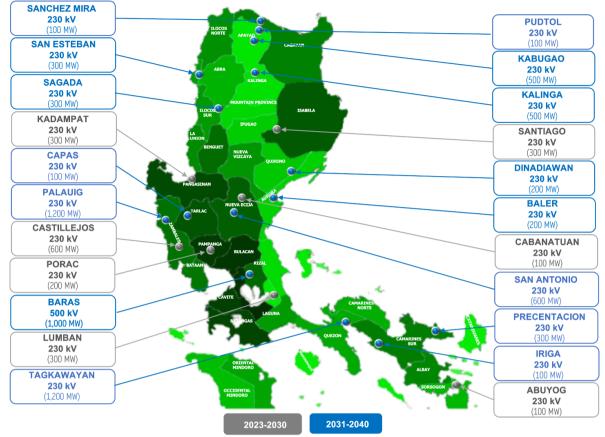


Figure 3.8: Recommended Power Plant Connection Points (Luzon)

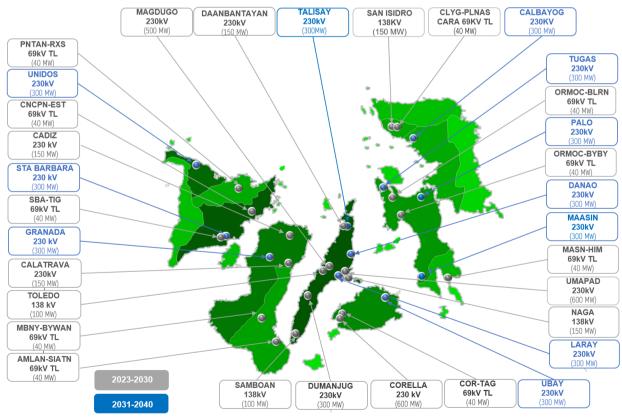


Figure 3.9: Recommended Power Plant Connection Points (Visayas)

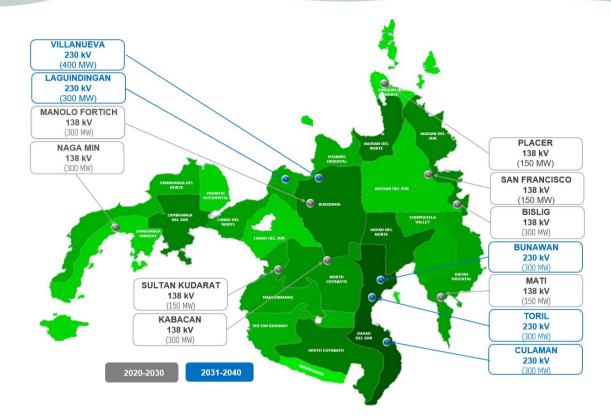


Figure 3.10: Recommended Power Plant Connection Points (Mindanao)

Table 3.7 Project Clusters and Project Name

3.6 Project Clustering

To achieve optimal resource utilization, NGCP transmission projects were grouped in different clusters or components based on geographic location to enable sharing of resources, including manpower, project partner/suppliers, and knowledge. With clustering, resources can be optimized which would result in lower costs, better flexibility, and higher productivity. The table below shows the list of project clusters from Luzon, the Visayas, and Mindanao. A cluster is defined technically as interrelated ventures with similar geographical location, project driver, and purpose based on NGCP's TRANSMISYON 2040:

 Metro Manila Backbone (North) Projects for Resiliency, System Reliability, and Smart Grid Development Marilao 500kV SS Marilao-Mexico 230kV TL Marilao-Navotas 230kV TL (Associated component of Navotas SS) Navotas-Dona Imelda 230kV TL 	Metro Manila Backbone (South) Project for Resiliency, System Reliability, and Smart Grid Development Antipolo 230kV SS Baras 500kV SS Luzon Voltage Improvement Project 3 Manila (Navotas) 230kV SS Pasay 230kV SS Silang-Taguig 500kV TL South Luzon SS Upgrading Project Stage 1 Taguig 500kV SS Taguig-Taytay 230kV TL 	 Southeastern Mindanao 230/138 kV Backbone Project for Resiliency, System Reliability, and Island Interconnection Eastern Mindanao Voltage Improvement Project - MRBD Maco-Tagum 69 kV TL Project - MRBD Maco-Mati 138 kV TL - MRBD Mindanao SS Expansion 4 Project Mindanao SS Rehabilitation Project Mindanao SS Upgrading Project
North Luzon 500/230 kV Transmission Projects for Reliability 1	North Luzon 230/115 kV Transmission Projects for Reliability	Southwestern Mindanao 230/138 kV Backbone Project for Resiliency, System Reliability, and Island
Bataan 230 kV Grid Reinforcement Project 2	• Capas 230 kV SS - NLRBD	Interconnection
Castillejos 230kV SS	Clark-Mabiga 69kV TL	• Kabacan SS - MRBD
 Dasol 230kV SS - NLRBD 	 Concepcion–Sta. Ignacia 69 kV TL 	Koronadal 138kV SS Project
Hermosa–San Jose 500kV TL	 Luzon Voltage Improvement Project V 	Mindanao SS Rehabilitation Project
Luzon Voltage Improvement Project 3	 Minuyan 115 kV Switching Station 	Mindanao SS Upgrading Project
 Mariveles–Hermosa 500kV TL 	Nagsaag-Tumana 69 kV TL	 Tacurong–Kalamansig 69 kV TL Project-MRBD
 Olongapo 230kV SS - NLRBD 	 North Luzon SS Upgrading Project II 	 Mindanao SS Expansion 4 Project - MRBD
 San Rafael-San Jose 230kV TL 	Plaridel 230kV SS	Sultan Kudarat (Nuling) Capacitor
Western 500 kV Backbone Stage 1	 Porac 230 kV SS 	 Sultan Kudarat-Tacurong 230 kV TL Project
Western Luzon 500kV Backbone Stage 2	 San Simon 230kV SS – NLRBD 	

Page | 30

North Luzon 500/230 kV Transmission Projects for Reliability 2

- Ambuklao-Binga 230 kV TL
- Baler 230kV SS
- Binga-San Manuel 230 kV TL
- Cabanatuan-Sampaloc-Nagsaag 230kV TL
- La Trinidad-Calot 69kV TL
- Luzon Voltage Improvement ProjectNagsaag-Santiago 500kV TL
- Nagsaag-Santiago 50
 Sampaloc 230kV SS
- Sampaloc 230KV 33
 Sampaloc Nagsaag-Santiago 500kV TL
- Sampaloc-Baler 230kV TL
- San Manuel-Nagsaag 230kV TL Project

South Luzon 500/230 kV Backbone Project for Resiliency and System Reliability

- Batangas Mindoro Interconnection
- Calamba-Dasmarinas 230kV TL
- Calamba 230kV SS SLRBD
- Calaca-Salong 230kV TL 2 Project
- Kawit 230kV SS
- Luzon Voltage Improvement Project 6
- Pagbilao EHV SS SLMBD
- Pagbilao-Tayabas 500kV TL SLMBD
- Palawan- Mindoro Interconnection Project
- Pinamukan 500kV SS
- Pinamukan Tuy 500kV TL Project
- Silang 500kV SS
- Tanauan 230kV SS SLRBD
- Tuy 500/230kV SS (Stage 1)
- Tuy 500/230kV SS (Stage 2)

Metro Cebu 230/138 kV Backbone Project for Resiliency and System Reliability and Island

- Danao 230kV SS Project
- Cebu-Bohol 230kV Interconnect Project VBD
- Cebu-Lapu-Lapu TL
- Cebu-Negros-Panay 230 kV Backbone Stage 1 VBD
- Cebu-Negros-Panay 230 kV Backbone Stage 2
- Cebu-Negros-Panay 230 kV Backbone Stage 3
- Colon-Samboan Permanent Restoration
- Laray 230 kV SS (Initially energized at 138 kV)
- Laray-Alpaco 230 kV Energization Project
- Laray-Cordova 230 kV Interconnection Project
- Lapu-lapu 230 kV SS Project
- Mindanao-Visayas Interconnection Project
- Naga (Visayas) SS Project (Remaining Works)
- Nivel Hills 230 kV SS Project VBD
- Visayas SS Upgrading Project 1
- Visayas Voltage Improvement (Stage 1)

North Luzon 500/230 kV Backbone for Resiliency and System Reliability 3

- Balaoan-Laoag 500kV TL
- Bauang-La Trinidad 230kV TL Upgrading
- Bolo–Balaoan 500kV TL
- Luzon Voltage Improvement Project 3
- Multicircuit Project in Ilocos
- North Luzon SS Upgrading Project
- Northern Luzon 230kV Loop
- Pinili 230kV SS
- San Fabian 230kV SS Project
- Tuguegarao-Lal-lo 230kV TL

Tuguegarao-Enrile 69kV TL

South Luzon 230/115 kV Transmission Project for Resiliency and System Reliability

- Abuyog 230kV SS SLRBD
- Batangas-Mindoro Interconnection Project
- Daraga-Bitano 69kV Line SLRBD
- Eastern Albay 69kV TL
- Luzon Voltage Improvement Project 4
- Luzon Voltage Improvement Project 5 SLRBD
- Luzon-Visayas HVDC Bipolar Operation Project
- Permanent Restoration of Tower Damaged by Typhoon Tisoy
- Salvacion-Sta. Misericordia 69kV TL
- Salvacion(APEC)-Sto. Domingo 69kV TL
- South Luzon SS Upgrading Project Stage 1
- South Luzon SS Upgrading Project Stage 2
- Tagkawayan 500kV SS SLRBD
- Tiwi SS Upgrading
- Tower Resiliency of Bicol Transmission Facilities

Negros and Panay 230/138 kV Backbone Projects for Resiliency, System Reliability, and Island Interconnection

- Amlan–Dumaguete 138 kV TL Project VBD
- Banga 138kV SS Project
- Barotac Viejo-Natividad 69 kV TL Project VBD
- Bayawan–Sipalay 138 kV TL (Initially energized at 69 kV)
- Cebu-Negros-Panay 230 kV Backbone Stage 1 VBD
- Granada 230 kV SS Project
- Banga 138kV SS Project
- La Carlota 138 kV SS Project
- Nabas-Caticlan-Boracay TL Project VBD
- Negros-Panay 230 kV Interconnection L2 Proj VIP
- Tigbauan 138 kV SS Project
- Panay-Guimaras 138 kV Interconnection Project
- Panay-Guimaras 138 kV Interconnection Proj Line 2
- Siaton-Bayawan 138 kV TL (Initially energized at 69 kV)
- Sipalay 138 kV SS Project
- Visayas SS Upgrading Project 2
- Visayas SS Uprading Project 3

Northeastern Mindanao 230/138 kV Backbone Project for Resiliency, System Reliability, and Island Interconnection

Chapter 3

- Eastern Mindanao 230 kV TL Project
 Mindanao SS Expansion 4 Project
- Mindanao SS Expansion 4 Project
 Mindanao SS Rehabilitation Project
- Mindanao SS Upgrading 2 Project
- Mindanao SS Upgrading Project
- San Francisco-Tago 138 kV TL Project

Northwestern Mindanao 230/138 kV Backbone Project for Resiliency, System Reliability, and Island Interconnection

Mindanao SS Upgrading 2 Project (MSU2P) - MRBD

Agus 6-Kiwalan-Lugait 69 kV TL Proj - MRBD

Lala-Naga-Zamboanga 230 kV TL Project
Laguindingan 230kV SS Project

Naga (Min) -Salug 138 kV TL Project

Mindanao SS Expansion 4 Project

• Mindanao SS Rehabilitation Project

Mindanao SS Upgrading 2 Project

Polanco-Oroquieta 138kV TL Project

Mindanao SS Upgrading Project

Tigbao 138kV SS Project Tumaga 138kV SS Project

Project (ZPVIP) - MRBD

• Babatngon-Sta. Rita 138 kV TL

Bool 138kV SS Project

Tagbilaran 69kV SS

Calbayog-Allen TL Project

Babatngon–Palo 138 kV TL Project

Interconnection

Project

•

Mindanao - Visayas Interconnection Project

Oroquieta 69 kV Switching Station Proj-MRBD

Zamboanga Peninsula Voltage Improvement

Leyte, Samar and Bohol 230/138 kV Backbone Projects for Resiliency, System Reliability, and Island

• Cebu-Leyte 230kV Interconnection Lines 3 and 4

Corella-Ubay 138kV Line 2 Stringing Project

Page | 31

Ormoc-Babatngon 230kV TL Project

Typhoon Ursula Restoration Project

Visayas Voltage Improvement Project

Sumangga 138 kV SS Project

- Balo-i-Kauswagan-Aurora 230 kV TL
- Kauswagan-Lala 230kV TL

•

•

.

•

.

•

GRID RESILIENCY

To improve the ability of the power system to withstand the effects of adverse environmental conditions, natural or man-made power interruptions, and other disturbances, there is a need to further reduce the technical and human risks to minimize disruption of power delivery service to the electricity end-users.

4.1 Resiliency Policy

The Philippines, considering its geographical location and being an archipelago with one of the world's longest coastlines, is vulnerable to the impacts of climate change. In 2018, the DOE introduced the Resiliency Policy, which is the adoption of resiliency planning and program in the energy industry to mitigate the adverse effects brought about by disasters. This contains adaptation measures that include both engineering and non-engineering options, to gauge infrastructure and human resource preparedness during and after disruptive events.

4.1.1 Resiliency Planning for Transmission System

In anticipation of the increasing frequency of super typhoons, earthquakes, volcanic eruptions, and other natural or man-made hazards, the challenge for the transmission system is to keep improving the preventive measures and risk reduction, adopt the "build back better" principle after disasters or build better from the start. This could be done by making disaster risk assessment a prerequisite for transmission infrastructure investment². As the NGCP recognizes its critical role in the country's power industry, specifically in ensuring the uninterrupted transmission and availability of electrical power energy to end-user, hence its Plans and Program on Resiliency is summarized as follows:

 New transmission structures to be built using upgraded wind speed design

4.1.2 Enhancement of Transmission Line and Substation Site Selection

 In the process for TL route selection, careful evaluation is undertaken to avoid areas prone to flood, with steep slopes prone to soil erosions, and with sufficient distance from fishponds, rivers, lakes, swamps, and seashores. A high degree of power system reliability is equivalent to the high availability of the electricity supply service, while excellent system security gives robustness to the power system to withstand unexpected events that have severe consequences¹. Chapter 4

In line with this, the DOE has promulgated DOE DC 2018-01-001 "Adoption of Energy Resiliency in the Planning and Programming of the Energy Sector to Mitigate the Potential Impacts of Disasters". The DOE resiliency plans and programs are summarized as follows:

- · Strengthen existing infrastructure facilities
- Incorporate mitigation improvements "Build Back Better" principle
- Improve operational and maintenance standards and practices
- Develop resiliency standards
- Replacement of old transmission lines stage by stage
- Establishment of transmission backbone loop configuration including the telecommunication network
- Enhanced substation site and transmission line route selection criteria using hazard maps issued by government agencies
- Establishment of spares for Emergency Restoration System (ERS), steel poles, and HVE including mobile transformers
- Flood control at existing Substations, slope protection/concrete bored-pile foundation for existing overhead TL structures
- For SS sites, the risk of flood or flash flood is carefully assessed, while avoiding areas that are considered possible sources of pollution, e.g., industrial plants/buildings that generate polluted gases, storage areas for explosive or inflammable materials, bulk oil storage tanks, and oil/gas pipelines. If necessary, proximity to seashore is also avoided to prevent or

¹ CIGREE-IEEE joint task force on stability terms and definitions.

² Global Platform for Disaster Risk Reduction.

minimize corrosions and depletion or failure of insulations of substation equipment.

 For existing overhead transmission lines that exhibit critical function to the grid and are in areas vulnerable to typhoon and storm surges, the use of HV underground cables will be thoroughly considered.

4.1.3 Increase of Transmission Towers Strength and Capacity

The maximum Wind Speed Design (WSD) of overhead transmission lines' (OHTL) support structures is based on three wind zones: Zone 1 (270 kph), Zone 2 (240 kph), and Zone 3 (160 kph). In view of the increasing frequency of super typhoons that hit various areas in the country in the past decade, NGCP will be increasing the maximum velocity design of support structures.

- OHTLs to be erected in Luzon are recommended to be upgraded to withstand a wind speed of 300 kph to be able to meet the effects of super typhoons occurring due to climate change;
- Existing transmission towers which are designed at 3second gust wind speed 270 kph should be upgraded or retrofitted to carry higher wind speeds;
- Anti-pilferage bolts are being specified to be used (instead of regular connection bolts) in all towers up

4.1.4 Security of Transmission Assets

In areas with security issues, each proposed transmission project is subjected to security assessment as part of the TL route or SS site selection process. All security threats are thoroughly identified to determine the level of risk and

4.1.5 Transmission Line Looping Configuration

To further improve the system reliability, enhance the operational flexibility during events of natural calamities, and to support the connection of various incoming power plants, particularly RE, the long-term transmission planning involves the various transmission looping configurations.

4.1.6 Use of HV Underground Cables

Power System could be made more resilient through underground cable installations as these are less susceptible to outages during extreme weather conditions, such as super typhoons and strong wind thunderstorms. However, because of the excessive cost of underground

4.2 Asset Replacement

NGCP replacement program adopts international best practices in the assessment of assets. The methodology being used is believed to provide the most informed

4.2.1 Asset Condition Assessment

Condition parameters for each asset type were developed based on the asset's operational and maintenance data, defects, and age. These condition parameters are determined to be the best factors that can accurately represent the overall condition of an asset. The parameters are ranked and evaluated, through the assignment of corresponding weights based on their contribution to asset degradation. Furthermore, NGCP selects overhead TL routes and SS sites that have minimal effect on human settlement or as much as possible, minimize the removal of vegetation or cutting of trees

to 9m from the ground for 138 kV lines and 12m for lines of at least 230 kV to prevent the pilferage of tower parts which can cause the toppling of steel towers/poles.

Based on the latest design of NGCP, a new tower design that can withstand 300 kph wind speed is being adopted and to be implemented for Tower Structure Upgrading of Bicol Transmission Facilities and Tower Resiliency of Bicol Transmission Facilities Projects.

As of the 2022 latest improvements in the transmission towers, there are already 267 at 270 kph design and 147 towers at 300 kph design.

the corresponding mitigation measures that will be implemented during construction and its eventual operation.

Various backbone transmission systems involving 138kV, 230kV, and 500kV lines will be implemented in stages, but part of several segments that will eventually form a transmission loop as the end state.

cable installation, initial applications are limited or confined only in highly urbanized areas, wherein the land is a valuable resource. Securing ROW is a great challenge and aesthetics is a paramount consideration.

decision pertaining to the management of the transmission assets. This will be applied to all NGCP's operational assets which will be discussed in the following sub-sections.

Condition and sub-condition parameters were developed for power transformers, PCB, current and potential transformers, and surge arresters. The condition parameters shall be used to calculate the health index of an asset. Asset health index refers to the quantitative measure of the relative condition of an asset. The health index can be interpreted as an approximate representation of the estimated life of an asset.

Based on the health index of an asset, its corresponding probability of failure can be derived by using a probability distribution function. The probability of failure of an asset

4.2.2 Asset Prioritization

Prioritization of specific assets shall be based on a calculated health index which shows an estimate of the asset's relative condition. The assets that fall below the minimum threshold set shall be further evaluated to

can give a relative possibility of an equipment failure. The effect of such failure should be taken into consideration as part of the evaluation of the assets. To be able to quantify the relative consequence of failure or the criticality of an asset, the social, financial, and economic impact of an asset failure must first be identified.

determine whether to replace or maintain the said asset. Only replacement programs are to be considered since this approach evaluates the condition of existing assets.

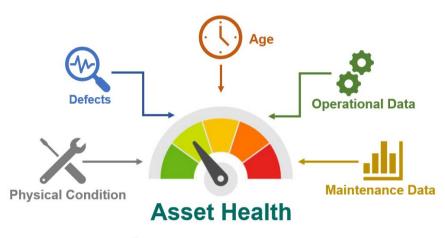


Figure 4.1: Asset Health Composition

4.2.3 Standard Asset Lives and Asset Database

As an initial step in the creation of an asset refresh program, NGCP considered the standard asset lives adopted in the 2008 re-valuation of transmission assets for the 3rd Regulatory Period (2011-2015). Appendix 5 shows the summary of Asset Lives and Figure 4.2 shows the 115 kV to 500 kV OHTL age profile.

The existing asset database was obtained from Enterprise Asset Management (EAM) utilized by NGCP.

This software is utilized to monitor and perceive existing major equipment to optimize the utilization of assets and their condition throughout their lifecycle as well as to provide a database for relevant information. In the succeeding years, a system-based tool capable of performing data analytics may be used to facilitate a corporate-wide prioritization of old transmission assets that will be programmed to be replaced.

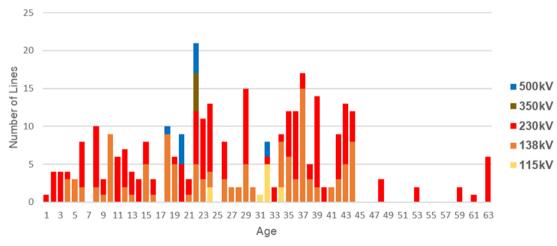


Figure 4.2: Overhead Transmission Line Age Profile (August 2021)

TECHNOLOGY APPLICATION

5.1 Battery Energy Storage System

In August 2019, the DOE issued Department Circular No. DC2019-08-0012 entitled, "Providing a Framework for Energy Storage System in the Electric Power Industry", establishing a policy on the operation, connection, and application of Energy Storage System (ESS) among others. It recognizes that the ESS technologies are applied to serve a variety of functions in the generation, transmission, and distribution of electric energy, which include Energy Generation, Peak Shaving, and AS. The increasing integration of Variable Renewable Energy (VRE) in the transmission system necessitates the recognition of ESS as one of the technologies to manage the intermittent operation of the VRE-generating plants' output to ensure stability. Moreover, ESS will be one of the key elements in the proposed Smart Grid Roadmap towards power system modernization.

Among the ESS, the Battery Energy Storage System (BESS) is still considered a new technology in the Philippines with various applications for the transmission system, these are provision of AS, transmission facility upgrades deferment, and transmission congestion relief.

The increasing penetration of VREs has the potential to cause significant degradation of the power system performance due to their intermittent nature, which necessitates an increase in the required flexible generation. With a focus on large-scale wind and solar

5.1.1 NGCP's Recommended Sites and Capacities for BESS

5.1.1.1 Methodology

The methodology used in determining the recommended capacities and sites of BESS involved load flow analyses to determine the maximum capacity that each site can accommodate during charging and discharging states of BESS with unity power factor.

The scenarios considered in the system simulation were base case peak demand. To test the available capacity of NGCP substation/facilities, the worst generation dispatch was used to see the total power flowing to the connection points. The generation dispatch scenarios discussed in

5.1.1.2 Application

NGCP initially identified BESS's application as a provision for AS, particularly as a reserve. Considering the

power generation connected to the grid, rapidly varying power output depending on many factors results in many challenges in the System Operations. BESS is now being widely used to mitigate the effects of integrating RE resources. BESS is capable of absorbing and delivering both real and reactive power in a millisecond time frame. With such capability, BESS is being used in addressing the challenges on the intermittency brought by RE, i.e., solar and wind energy sources on their ramp rate, frequency, and power quality.

Moreover, the applications considered for the BESS also include frequency regulation, RE fluctuation stabilization, etc. The system inertia, governor droop, and damping capability of the BESS can be set (dynamically) according to the power system requirements. Thus, BESS appears to offer one of the most flexible providers of AS to the transmission system.

Furthermore, BESS, when connected to appropriate nodes may defer the need for additional transmission facility upgrades by supplying the peak demand of grid/end-users through BESS. It can also mitigate or eliminate transmission congestion when power demand exceeds the transmission network capability which may lead to a violation of thermal or voltage stability.

Section 3.2 were considered in the system simulation involving BESS.

The following criteria are considered for normal and N-1 conditions:

- No overloading of the existing and future equipment and facilities once the BESS are connected and operating as a load and as a generator
- The resulting voltages are within the PGC prescribed limits
- SS termination is available

forthcoming transition to new AS classifications, i.e., primary, secondary, and tertiary reserves, and with

BESS's fast response and flexibility, it is initially seen to be well suited as a primary reserve. Further studies will be conducted to explore other applications of BESS

5.1.1.3 List of Recommended Capacities and Sites

The following are the initial lists of recommended capacities and sites of BESS are primarily reserved in Luzon, the Visayas and Mindanao Grids:

Table 5.1 Recommended BESS Capacity (MW) and Sites in Luzon

Substation	Voltage	Recommended BESS Capacity (MW)
Masinloc	69 kV	20
Daraga	69 kV	40
Laoag	69 kV	40
San Rafael	69 kV	20
Labo	69 kV	20
Mexico	69 kV	20
San Manuel	69 kV	20
Bay	69 kV	20
Labrador	69 kV	20
Lamao	230 kV	30
Lumban	69 kV	40
Luzon	Total Capacity	290

Table 5.2 Recommended BESS Capacity (MW) and Sites in Visayas

Substation	Voltage	Recommended BESS Capacity (MW)
Kabankalan	138 kV	10
Ormoc	69 kV	20
Samboan	69 kV	10
Sta. Barbara	138 kV	10
Compostela	230 kV	20
Visayas	Total Capacity	70

Table 5.3 Recommended BESS Capacity (MW) and Sites in Mindanao

Substation	Voltage	Recommended BESS Capacity (MW)
Villanueva	138 kV	10
Davao	69 kV	20
Maco	69 kV	20
Kibawe	69 kV	20
Butuan	69 kV	20
Mindanao	Total Capacity	90

including the adoption of the best practices in other jurisdictions in determining additional reserves due to rapidly increasing VRE penetration in the grid.

5.1.2 Committed BESS

Several BESS power plants are included in the DOE list of Committed power plants as of 28 February 2023 as shown in Figures 5.1 to 5.3.

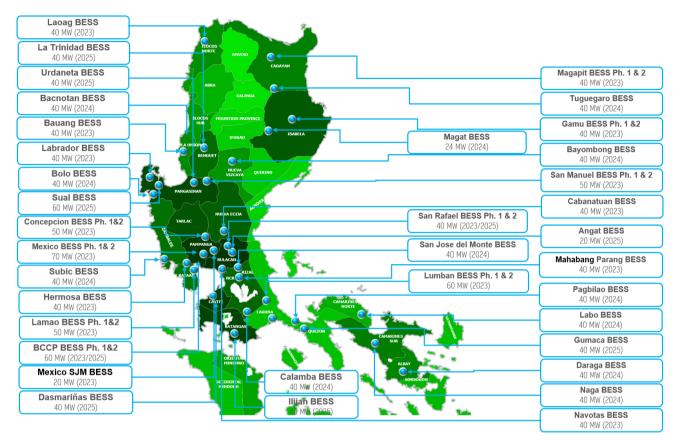


Figure 5.1: Committed BESS in Luzon

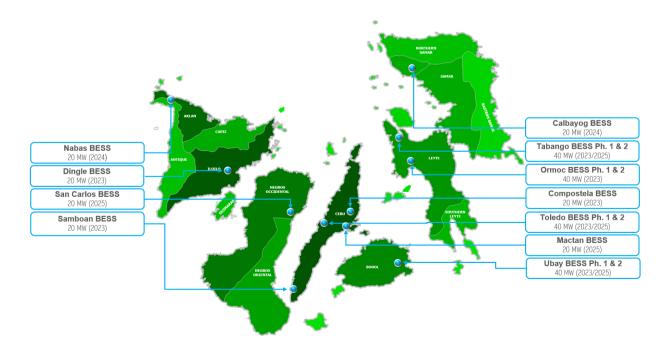


Figure 5.2: Committed BESS in Visayas

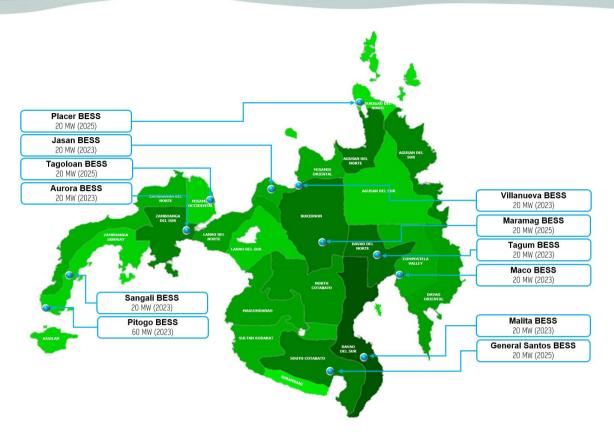


Figure 5.3: Committed BESS in Mindanao

5.2 Adoption of SMART Grid Technologies

There has been continuing research and development over the years toward the commercial realization of the Smart Grid. Nowadays, the adoption of Smart Grid technologies and the development of Smart Grid roadmaps and pilot projects have become a global trend for power utilities.

In the Philippines, with the goal to develop a Smart Grid Policy and Roadmap for the country, the DOE issued on 11 March 2013 Department Circular No. DC2013-03-0003 – Creating an Inter-Agency Steering Committee for the Development and Formulation of a Comprehensive and Holistic Smart Grid Policy Framework and Roadmap for the Philippine Electric Power Industry. This also aims to promote technological innovation, business growth, and job creation thereby enhancing the regional and global competitiveness of the Philippines.

On 6 February 2020, the DOE promulgated the Department Circular DOE DC 2020-02-0003 entitled "Providing a National Smart Grid Policy Framework for the Philippine Electric Power Industry and Roadmap for Distribution Utilities". It envisions the Philippines to reach a level of Smart Grid development capable of, namely:

- Self-healing grid
- Full implementation of Retail Competition and Open Access (RCOA), Renewable Portfolio Standards

(RPS), Green Energy Option (GEOP), and Net Metering

- Full Customer Choice, Demand Response and Peak Load Management
- Optimized Energy Storage Systems (ESS), Energy Management Systems (EMS), and Distribution Energy Resources (DER) Management Systems; Virtual Power Plant Integration
- Smart Homes and Cities.

Smart Grid is the concept of modernizing the electric grid. The Smart Grid comprises everything related to the electric system in between any point of generation and any point of consumption. Through the addition of Smart Grid technologies, the grid becomes more flexible, interactive, and can provide real-time feedback.³

The power flow will change from a unidirectional power flow (from centralized generation via the transmission grids and distribution grids to the customers) to a bidirectional power flow. Furthermore, the way a power system is operated changes from the hierarchical topdown approach to a distributed control. One of the main points about Smart Grid is an increased level of observability and controllability of a complex power system. This can only be achieved by an increased level of information sharing between the individual component

³ From IEC Definition of Smart Grid

and subsystem of the power system. Standardization plays a key role in providing the ability of information sharing which will be required to enable the development of new applications for a future power system.⁴

Over the past 10 years, NGCP has implemented several smart grid initiatives including the upgrade of Supervisory Control and Data Acquisition-Energy Management System (SCADA-EMS), establishment of the Overall Command Center, implementation of Microprocessor-Based Substation Control (MBSC), time synchronization devices, transient fault recorders in major substations, as well as holistic cyber-security enhancement program.

In general, the smart grid strategies for power transmission in the Philippines under the operation of NGCP can be classified into three broad areas: transformation, consolidation, and standardization.

Moreover, for an increased level of observability and controllability for the power grid, NGCP has a continuing further program for implementation of time synchronization devices, fiber optics to increase bandwidth to support the big data exchange that will be needed by the Smart Grid, SCADA-EMS enhancement, network protection enhancements, establishment of National Control Center and the integration of all monitoring systems of the grid. The Pasay Substation project will be the pilot substation with applied smart grid technology.

Smart Grid Strategies

TRANSFORMATION

Transmission backbone developments which include the MVIP and other island interconnections. 500 kV backbone extension, and backbone looping configuration to make the grid more flexible and resilient.

CONSOLIDATION

Application of advance information and communication technology to consolidate existing automatic systems and forward to nationwide level of integration.

5

STANDARDIZATION

Establishment of multidimensional Smart Grid framework suitable to the unique geological environment of the country.

Establishment of Smart Grid technical standards are crucial to ensure interoperability with all the players in the electric power industry.

Figure 5.4: Smart Grid Strategies

The need for Smart Grid is rooted in climate change and the need to move to more sustainable sources of Energy. A Smart Grid is one that incorporates information and communications technology (ICT) into every aspect of electricity generation, delivery, and consumption to minimize environmental impact, enhance markets, improve reliability and service, and reduce costs and improve efficiency." 5

This translates to improved grid security and information management, efficient integration of the connection between generators and load customers, effective response to the needs of the transmission network, and greater reliability and quality of power transmitted by the grid.

In the other words, a SMART Grid aims to

- Support and integrate renewable energy sources like Solar, Hydro and Wind.
- Empower consumers with real-time information about their energy consumption.
- Assist utility companies to reduce moves and outages.

As transmission network provider, NGCP adopts best practices, monitoring and control, data analytics, smart metering, supply reliability, green energy, energy storage integration, security and customer empowerment and satisfaction as shown in Figure 5.4.

⁴ From IEC Smart Grid Standardization Roadmap

⁵ From Electric Power Research Institute (EPRI)

5.3 Static Synchronous Compensator

Static Synchronous Compensator (STATCOM) is a kind of Flexible AC Transmission System (FACTS) device with parallel reactive power compensation. The use of FACTS devices in a power system can potentially overcome the limitations of the present mechanically controlled transmission system.

Installation of STATCOM in the Zamboanga Peninsula

The Zamboanga Peninsula is located at the load end of the radially configured Northwestern Mindanao Area network and most of the customer feeders are radially connected with long lines. Moreover, the absence of local generation makes the Zamboanga Peninsula very fragile and susceptible to low voltage and voltage fluctuation during normal and contingencies. On the other hand, the installation of additional Capacitor in General Santos and Tacurong substations will provide additional reactive power support in the network to maintain the system voltage within the nominal voltage during normal conditions and contingencies. The installation of reactive STATCOM is being proposed to help in the mitigation of the looming voltage problem in areas with inadequate local generation. The application of STATCOM in the Zamboanga Peninsula is being proposed to augment voltage support in the area.

power compensating device is proposed based on the following reasons:

- To balance the reactive power in the system and attain better voltage regulation
- To accept the import of power from distant sources
- To achieve rapid and smooth power factor correction preventing voltage spikes

Figure 5.6 shows the proposed installation of reactive power compensating devices in the Zamboanga Peninsula with 200 MVAR STATCOM in the Zamboanga SS and additional Capacitors in Naga and Pitogo substations.

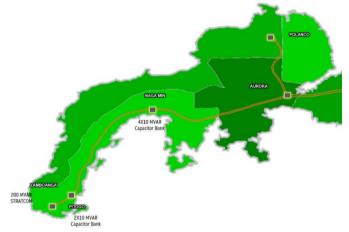


Figure 5.5: Installation of reactive power compensating devices in the Zamboanga Peninsula

5.4 Other Technology

With the continuous advancement in technology, NGCP is open to the adaption of new and developing technologies that have a substantial application to the operations and maintenance of the transmission system. Various pilot

5.4.1 Aerial Drone for Transmission Line Inspection

The pilot application of TL drone inspection showed positive results in terms of the reduction of inspection time compared to the manual inspection. The output of the drone was sufficient to identify common line hardware defects in a fast and efficient manner. With this, NGCP plans to procure a more advanced drone to address the limitations encountered that will be used by transmission line groups all over the country. A total of 45 drones have been delivered to different Regions. All the delivered drones have gone through functionality testing and an Instudies have been conducted to check the viability of these new technologies. The following sections below will introduce the application in operations and maintenance.

Figure 5.6: Dasmarinas-Las Pinas 230 kV Line Inspection of parallel groove clamps and insulators for potential deterioration

House Training is facilitated for drone pilots flight

Since 2019, NGCP continues to upgrade transmission facilities across the country despite the ongoing COVID-19 pandemic by using Unmanned Aerial Vehicle (UAV) and Remotely Piloted Aircraft (RPA) or drone technology. With its high-definition photo and video capabilities, transmission line inspections are efficiently completed within a shorter amount of time, in contrast to the previous practice of climbing transmission towers.

NGCP will continue to roll-out the use of drones around the country as very useful in conducting rapid assessment during emergencies, typhoon-damaged facilities and other disasters. And better monitoring of vegetation along transmission corridors and no boundaries in inspection, with or without ROW issues, the facility can be inspected any time of the day.

5.4.2 Online Monitoring of HVEs

assessment.

To remotely check the status of critical transmission assets, NGCP plans to install various online monitoring devices. Transformers and PCB were chosen as the ideal assets for the online monitoring as these are the most vital equipment in the SS. The following are the online monitoring devices that will be installed:

- Online Bushing Monitor
- Oil/Winding Temperature
- Online Dissolved Gas Analysis

The installation of online monitoring will enable technical personnel far from substations to assess the physical condition of the equipment.

5.4.3 Central Control Monitoring System (CCMS)/ CCTV As part of its ongoing efforts to improve energy/power transmission capabilities and bring the country closer to running on a Smart Grid, NGCP will be implementing the CCMS.

The Central Control Monitoring System (CCMS) is a management system that can provide reliability and security of the energy/power transmission system through management and monitoring the supply and delivery of electric energy to its various stakeholders as well as customers through automation.

- To automate the substations and achieve work efficiency by leveraging on technology and equipment.
- To support the organization's plans for automation and the initialization of the SMART Grid operation.
- To improve manpower efficiency and work environment moving forward to SMART Grid system.

Through the CCMS, NGCP will centralize the operations, control and monitoring of substations in one control center strategically located in every district, improving the operational performance of transmission facilities and provide greater flexibility for expansion.

For the project to be realized, the technical requirements must be met, all Substations should be MBSC compliant, and all manually operated should be replaced by motorized-operated disconnecting/ earthing switches (DS/ES), remote reset of lockout relays, and all connections should be properly wired to prevent misoperation.

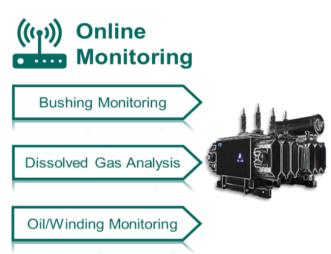


Figure 5.7: Online Monitoring System framework

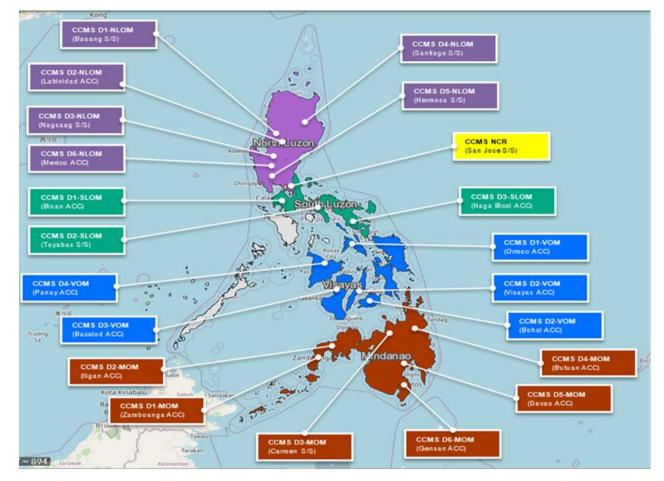


Figure 5.8: CCMS Map with 21 CCMS Station

Once operational, CCMS will be supported by Quick Response Team (QRT). QRT teams will be strategically stationed based on the geographical location of monitored substations to respond immediately during planned maintenance and unplanned outages. The Integration and set-up of our existing substations to CCMS workstations is still in establishment stage and the Pilot CCMS station and QRT implementation can be present through actual demonstration.

At present, we have a total of 138 major Substations all over the country as shown in Table 1.

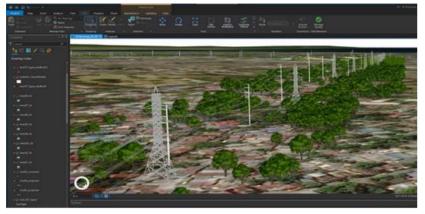
However, given the rapidly changing world of technology, the adaptation to these new technologies towards digital substations has also been associated with the increased vulnerability to cyber-attacks. With such vulnerabilities, NGCP is continuously improving its cyber-security implementation to provide a more reliable, and secured Power Grid, especially once CCMS is established.

Table	1.	Maior	Substation
Tuble	÷.	riujui	Jubstation

Region	No. of CCMS Stations	No. of Link Substation
North Luzon	6	37
NCR	1	7
South Luzon	3	20
Visayas	5	36
Mindanao	6	38
TOTAL	21	138

Moreover, centralizing the operations control and monitoring in one control center will simplify the operations process, safety and risk reduction, full utilization of the equipment and preparation towards Smart Grid operations. This system will further improve manpower efficiency and maximize the capability of existing equipment.

5.4.4 LiDAR Applications


With the strict compliance the to policies/guidelines incumbent upon the government regulators in forest reservations and protected areas, there is a compelling reason to adapt a technology that will align O&M's activity to the said guidelines by properly managing the affected forestland/protected areas. The fact is that some portions of transmission facilities traverse these forestlands/protected areas which cannot be avoided for economic and technical reasons.

Vegetation, specifically hazard trees, is the number one cause of tripping the flow of electric

current to customers through transmission lines which NGCP needs to resolve. NGCP is mandated to ensure the reliability of these transmission facilities. As such, NGCP would like to utilize airborne LiDAR (Light Detection and Ranging) to monitor and determine specific trees/obstructions which shall be cleared along the transmission lines.

In this way, pruning and trimming of danger trees could be done accurately and therefore compliant to the policies and guidelines being imposed by the regulators. Power

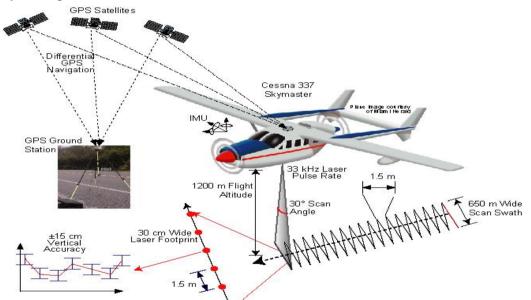

utilities in the world specifically in the US and Europe have been using LiDAR for some years back since it was made commercially available.

Figure 5.9: LiDAR Applications

LiDAR is a powerful data collection system that provides 3-D information for an area of interest or a project area for various applications:

- Surface mapping
- Vegetation mapping
- Transportation corridor mapping
- Transmission route mapping
- 3-D building mapping

Figure 5.10 LiDAR instrument principally consists of a laser, a scanner, and a specialized GPS receiver.

The accuracy of LiDAR technology is evident and acknowledged by government agencies and the commercial sector. In the future, LiDAR can also assist in wind flow modelling and the pre-construction design for wind farms. LiDAR has the capacity to be a useful laserbased wind profiler device for wind speed measurement and directional data capture, as a tool for resource assessment. LiDAR's remote sensing technology can be utilized for wind mapping applications in the years to come.

5.4.5 Centralized Online Monitoring System (COM

Project Centralized Online Monitoring System (COMS)

shall address the need to improve the asset monitoring of Operations and Maintenance (O&M) through centralized data collection and management. It intends to provide a readily available source of information for monitoring and predicting the health condition of a substation equipment. The project platform will be a web-based online application that will be developed inhouse. Likewise, the needed project requirements will utilize the existing hardware and software of IT.

The project aims to deliver the following:

- To provide Automatic Online Assessment and Evaluation to determine the overall Health Condition of the Equipment with corresponding maintenance recommendation.
- To serve and provide Real-time information that will guide O&M in the development of Maintenance and Reliability Program
- To have a Centralized Database of all essential maintenance and operational information from different data sources

With the completion of Project COMS, this will form part as one of the tools of Central Control and Monitoring System (CCMS) which is the first step towards unmanned substation.

Further, the data that will be collected will also be used in the Condition-Based Maintenance (CBM) under the Asset Management System.

Figure 5.11: CCMS Stations Map

COMS			D ONLINE MONIT	ORING SYSTEM					
Radaiche Radaicht Realannaiche Carrai N		Power Transfor		DAR					
Deleter	-2		EPE THE DITA	ø		MR T	Pres	Addit 100ATION	
			Citize .		1.15	MA -		English	BOUTH LUDIN REGION
E Calement/Marylos				1.0		118	Tanta	(limbing)	BOUTH OLZON- DEPREST 9
Data Management	14	TLOADING		34		M		Telefator	DAMADA SUBILIKIYUN
L Iter Maragement	- 14	48.72%			の動き		TOTAL STREET	WARFLITE	
N Parameter firelings		-		1				Meshidate	Aut.
Reports								Shide.	NO DATA
- report		© Power:	21.51 MW	100331234				Bank/ Number	ADEM/TTL1
t Help		Ø Reactive						Class.	01/01/02
			0.09 MVAR			Read and		Copyright (MIA)	28.908
								% impedances 14 X, Tap N	04.000
		OPERADENAL PARAM	NETTERNE					Data Manafastanan	395
		Prillipage	See Millery	Pictured	See Clevest	Tap Ponition	Wankey Serve	Voltage Filmay	250040-008
		23¢ 6V	71 17 KV	SA	0.0	ě.	0 degit.	Votage Gecondary	68008.009
		1251		2.0				Satage Setary	tota ameri
		POWER TRAVESTERIN	ERLEADING HIRTOR					Middig Growchie	AL/YO-TRANSFORMED WITH TERTANY
								Sector Group	mag()r.
		¥			nectoria (nector)				

Figure 5.12: Centralize Online Monitoring System Interface

RENEWABLE ENERGY

The Philippines' National Renewable Energy Program (NREP) aims for a 35 percent share of RE in the power generation mix by 2030 and a 50 percent share by 2040. There have been government policies, initiatives, and programs to help realize these goals. Among these measures are the establishment of the Philippine

Competitive Renewable Energy Zones (CREZ) and the introduction of the Green Energy Auction Program (GEAP). These measures encourage the participation of private sectors in RE development, thus the influx of RE project proposals, including new and emerging technologies, such as floating solar and offshore wind.

6.1 Philippine Renewable Energy

The general objectives and principles behind the CREZ were adapted from the DOE's Department Circular 2018-09-0027, entitled Establishment and Development of CREZ in the Country. The CREZ Process intends to:

- Identify abundant, high-quality, economic RE resources
- Reduce RE deployment barriers
- Improve national coordination for power system planning
- Enhance opportunities for RE investment

The Zone Working Group (ZWG) selected candidate Competitive RE Zones, which are geographical areas that enable the development of profitable, cost-effective, grid-connected RE. These zones were prescreened for high-quality resources, suitable topography, potential land-use constraints, and demonstrated private developer interest, thereby reducing overall feasibility assessment costs. From 34 candidate CREZ, the ZWG selected 25 CREZ in the Philippines.

Since traditional transmission planning could not efficiently support the RE developments mainly due to misalignment in terms of planning and construction time of RE and transmission facilities, both the transmission development and VRE projects go through circular dilemmas when these two do not meet (see Figure 6.1 Circular Dilemma). By evaluating the transmission needs of the system, as opposed to upgrading the system incrementally based on the needs of specific projects, costs will be reduced while amplifying the benefits⁶. As part of the CREZ Process, the Transmission Working Group developed transmission expansion options that could provide sufficient transfer capability to accommodate the CREZ. Shown in Figure 6.2

Figure 6.1: Circular Dilemma

are the identified CREZ in the Philippines and the associated transmission projects.

For the next phase of the CREZ Process, NREL and USAID will provide technical support to DOE and ERC to prepare a CREZ implementation plan. TransCo and NGCP are also engaged as key stakeholders in this activity. The next phase will cover topics such as CREZ Implementation Support, Improved Energy Storage Modeling and Considerations, and Enhanced Load Modeling and Forecasting for Long-term Power System Planning.

⁶ Lee et al. (2020). Ready for Renewables: Grid Planning and CREZ in the Philippines

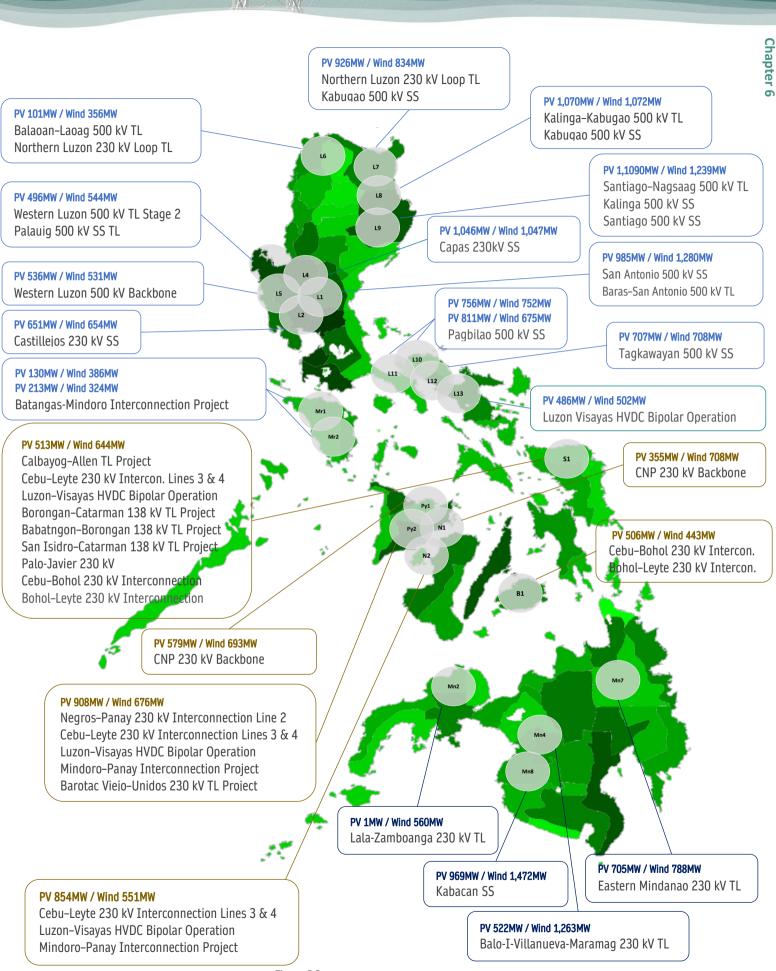
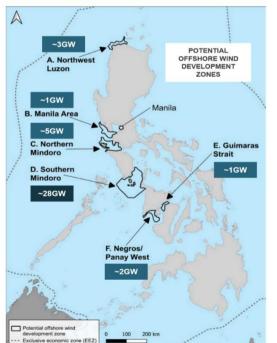


Figure 6.2: CREZ Approximate Location and Associated Transmission Projects

6.2 Offshore Wind Potential in the Philippines.


The DOE and the World Bank Group (WBG) released a new roadmap in April 2022 showing that the Philippines has the potential to install as much as 21 GW of offshore wind power by 2040 and 40 GW by 2050 with the right long-term vision, infrastructure development, investment, and policies.

The roadmap was initiated by the World Bank country team in the Philippines under the umbrella of the WBG's Offshore Wind Development Program—which aims to accelerate offshore wind development in emerging markets—and was funded by the Energy Sector Management Assistance Program (ESMAP) in partnership with the International Finance Corporation (IFC).

This roadmap provides a strategic analysis of the offshore wind development potential in the Philippines, considering the opportunities and challenges under different hypothetical growth scenarios. The goal is to provide evidence to support the Government of the Philippines in establishing policies, regulations, processes, and infrastructure to enable the successful growth of this new industry.

The roadmap also provides guidance on actions that must be taken by the government, putting in place a long-term plan for offshore wind until 2050 as part of a decarbonized energy mix; establishing offshore wind development zones through further marine spatial planning; investment in transmission, port and other energy infrastructure upgrades; increasing collaboration with industry and other relevant government agencies; among others. As of 16 May 2023, The DOE has awarded 65 offshore wind service contracts with an aggregate potential capacity of 51.228 GW. Among the awarded service contracts are offshore wind plants spread mainly in north of Luzon, west of Metro Manila, north and south of Mindoro, Guimaras Strait, Negros and Panay west. The target period of entry of the proposed offshore wind plants is from 2026 to 2033.

It can be noted that the huge potential for offshore wind development is on top of the CREZ capacity earlier established. In effect, the green transmission system as planned would require further modifications, e.g. extension of the 500 kV backbone up north and locating the new 500 kV substation closer to offshore wind locations instead at Laoag, use of 500 kV backbone within Mindoro island instead of 230 kV design only. As tapping the offshore wind resources would require massive transmission backbone development, further coordination with the DOE will be undertaken in updating the transmission build-out. The coordination would include the necessary inclusion of offshore wind in CREZ and update of the generation expansion plan that will serve as guide in the prioritization of generation projects and transmission projects. It is noted that in the High Growth Scenario in the roadmap, the offshore wind capacity by 2040 is 21 GW while the total capacity of offshore wind service contracts is 51 GW. The Offshore Wind Roadmap for the Philippines as published by WBG has initially recommended a "Transmission Vision in the High Growth Scenario for 2050" as shown in the map below.

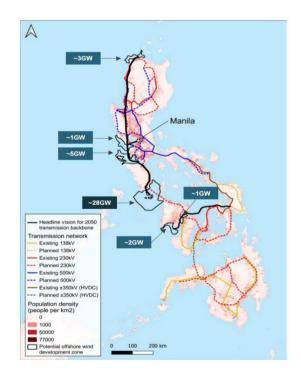


Figure 6.3: World Bank Group Offshore Wind Development Road Map

6.3 Floating Solar in the Philippines

In recent years, floating solar power plants have grown popularity with their main advantage—solving land issues associated with ground-mount solar power plants—as they do not require valuable land space. These are installed where the water is very calm, such as lakes, hydro dam reservoirs, and wastewater treatment ponds.

In its memorandum on 02 February 2022, the Laguna Lake Development Authority (LLDA) offered an initial predetermined area of about 2,000 hectares in Laguna De Bay for floating solar projects. Based on the memorandum, an

6.4 Green Energy Auction Program

The GEAP was issued on 03 November 2021 through DC No. DC2021-11-0036. It aims to foster greater private sector participation through the transparent and competitive selection process of RE suppliers and to accelerate the development of RE projects, ensuring that projects will be awarded at reasonable costs.

On 17 June 2022, the first auction round of GEAP was conducted through an electronic bidding platform. The first round generated 1,966.93 MW RE capacities from various RE resource types such as hydro, biomass, solar, and wind. The winning bidders will deliver energy from the period 2023 to 2025 at a competitive price lower than or equal to the Green Energy Auction Reserve prices set by the ERC. Table 6.1 shows the list of the first round's winning bidders, corresponding project capacity, and location.

RE developer applicant will be allocated a maximum of 100 hectares per block. The location of the solar projects would be 200 meters away from the lake's shoreline, with a 10.5-meter elevation requirement.

With the initial offering of LLDA in Laguna de Bay alone, approximately 2 GW in total will be added to the installed generation capacity in the country. Other locations being explored by the developers include the Mappanuepe Lake in San Marcelino Zambales.

In pursuit of the energy transition goal of the government, the DOE issued the Notice of Auction (NOA) on 27 March 2023 inviting all qualified suppliers to participate in the second round of the Green Energy Auction 2 (GEA-2).

While the GEA-2 is expected to encourage more investments in power generation, it further pursues to promote the growth of renewable energy (RE) as one of the country's primary sources of energy by facilitating transparent and competitive selection of RE facilities to support the major goal of the government of attaining energy security through the entry of new capacities in the grid.

The GEA-2 will offer a total capacity of 11,600 MW installation target, with 3,600 MW for 2024, 3,600 MW for 2025, and 4,400 MW for 2026.

Winning Bidders	Capacity (MW)	Project	Location
Luzon			
Solar Philippines Nueva Ecija Corporation	280	Santa Rosa Nueva Ecija 2 Solar Project	Santa Rosa, Nueva Ecija
Solar Philippines Commercial Rooftop Projects, Inc.	200	Concepcion Tarlac 2 Solar Power Project	Concepcion, Tarlac
Solar Philippines Commercial Rooftop Projects, Inc.	450	Tayabas Solar Project	Tayabas, Quezon
Greenergy Solutions Inc.	99.98	Talugtug Solar Project	Talugtug, Nueva Ecija
Cordillera Hydroelectric Power Corporation	60	Kapangan HEPP	Kapangan, Benguet
Hedcor Inc. of the Aboitiz Group	20	Sablan 1 HEPP	Sablan, Benguet
Amihan Renewable Energy Corporation	70	Caparispisan II Wind Project	Pagudpud, Ilocos Norte
Solar Philippines Calatagan Corporation	30	Calatagan Wind Project	Calatagan, Batangas
Bayog Wind Corporation of the Ayala Group	160	Balaoi and Caunayan Wind Project	Pagudpud, Ilocos Norte
CleanTech Global Renewables Inc.	100.8	Kalayaan 2 Wind Project	Laguna and Quezon
PAVI Green Renewable Energy Inc.	40.4	PAVI Green Naga Solar Power Project	Naga, Camarines Sur
Visayas			
Solar Philippines Visayas Corporation	300	Kananga-Ormoc Solar Project	Leyte
Petrowind Energy, Inc.	13.2	Nabas 2 Wind Power Project	Nabas, Aklan
Mindanao			
Philnewriver Power Corporation	3.7	Malitbog HEPP	Malitbog, Bukidnon
Philnewriver Power Corporation	3.7	Silo-O HEPP	Malitbog, Bukidnon
Philnew Hydro Power Corporation.	4.85	Mat-I 1 HEPP	Claveria, Misamis Oriental

Table 6.1: GEAP First Auction Round's Winning Bidders

Winning Bidders	Capacity (MW)
Philnew Hydro Power Corporation.	6.9
Solar Philippines Commercial Rooftop Projects, Inc.	120
Cotabato Sugar Central Company, Inc.	3.4

6.5 Grid's Readiness with the Penetration of Renewable Energy Resources

While the projected increase in the penetration of RE resources is encouraging, the intermittent nature of RE resources, particularly VRE, poses new challenges for grid planning and operation. It requires strengthening the transmission network through expansion and upgrades. The development of strong backbones in Luzon, the Visayas, and Mindanao Grids, as well as significant stretches of interconnection lines through submarine cables, are the minimum requirements to ensure energy transmission from various potential RE development zones to the loads throughout the Philippines.

Operational flexibility is also crucial in addressing the additional net-load variability brought by VRE. Advanced forecasting to reduce the uncertainty of VRE and the deployment of more flexible and fast-acting energy storage systems for ancillary service applications are among the options to improve operational flexibility.

Location

Clarin, Misamis Occidental

General Santos City

Cotabato

NGCP is already considering RE developments in grid planning and operation. Further studies are being conducted to understand the potential impacts of high penetrations of RE and to identify solutions that will address RE integration challenges, ensuring the grid's readiness for the realization of RE goals in the future.

69 kV FACILITIES

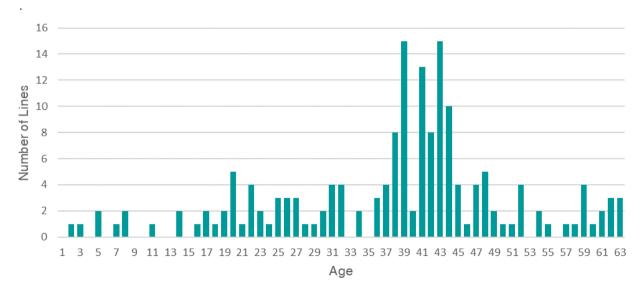
7.1 Background

The EPIRA provides that the 69 kV facilities or the subtransmission assets shall be operated and maintained by TransCo until their divestment to qualified distribution utilities which are able to take over the responsibility for operating, maintaining, upgrading, and expanding said assets. TransCo shall negotiate with and thereafter transfer such functions, assets, and associated liabilities to the qualified distribution utility or utilities connected to such subtransmission facilities not later than two years from the effectivity of the EPIRA or the start of open access, whichever comes earlier.

The ERC also issued the Guidelines to the Sale and Transfer of the TransCo's Subtransmission Assets and the Franchising of Qualified Consortiums on October 17, 2003, to establish the approval process of the sale and transfer of subtransmission assets to distribution utilities. This is later amended by ERC Resolution no. 15, series of 2011 with objectives to:

 Ensure continued quality, reliability, security, and affordability of electric service to end-users

7.2 Age Distribution of 69 kV Lines Nationwide


The majority of NGCP-operated 69 kV Lines nationwide are composed of Wood Pole Structures that already exceeded its 25-year asset life, as seen in Figure 7.1. Although these assets are part of the Wood Pole

- Ensure the transparent and reasonable prices of electric service in a regime of free and fair competition and to achieve greater operational and economic efficiency
- Enhance the inflow of private capital and broaden the ownership base of sub-transmission assets
- Provide for the orderly and transparent sale and transfer of sub-transmission assets of TransCo or NGCP to qualified buyers

Further, the Final Determination issued by the ERC for the 2^{nd} Regulatory Period (2006 – 2010) for the TransCo states that:

"The ERC does not anticipate that TransCo will be financing anymore subtransmission projects in 3-4 years time. Considering that the cost of these sub transmission assets shall be solely borne by connected customers, who shall eventually acquire these assets, projects such as these shall already be undertaken by the concerned customers requiring installation/upgrade."

Replacement Program of NGCP, it is still highly encouraged that Distribution Utilities take the responsibility to operate, maintain, upgrade, and expand these assets.

7.3 Way Forward

As a way forward, short and long-term plans by NGCP and the DU need to be realized to comply with the EPIRA and transmission regulations set by the ERC.

Short-Term

- Co-location of NGCP-operated 69kV capacitor at DU load-end substations
- Implementation of new 69 kV lines or reconductoring of existing lines
- Installation of RTU at LES to support the market operation

 Relocation of metering location pursuant to ERC Resolution 23, S. 2016

Long-term

- NGCP to develop new 230/69 kV or 138/69 kV substations to serve as an alternate source of the DU
- For all new LES to be developed by DU capacitor installation to be considered or at least with space provision
- Encourage the distribution utilities to implement additional outgoing 69 kV lines from existing NGCP 69 kV SS.

LUZON TRANSMISSION OUTLOOK

The DOE list shows that there are many committed and indicative power plant projects in Luzon Grid, which can well support the increasing demand for the next 10 years. The incoming large capacity coal-fired power plants, as well as natural gas-fired power plants, are mainly concentrated in Batangas, Quezon, Bataan, and Zambales, which would result in huge excess power in these areas. Since the remaining transmission capacity of the existing facilities is also very limited for the grid integration of additional bulk generation, the development of the Luzon Grid is geared towards the implementation of new 500 kV transmission facilities that would allow power export from generation sites going to the load center.

With the increasing delivery of bulk power to the 500 kV system, the two existing 500 kV Substations located at San Jose del Monte City in Bulacan and Dasmariñas in Cavite that serve as the only Extra High Voltage (EHV) drawdown facilities supporting the Metro Manila loads, will become critical nodes in the grid. The capacity expansion and space limitations in these Substations could result in grid congestion unless new 500 kV drawdown Substations will be developed. In the TDP, new 500 kV Substations are being proposed with the priority site in Taguig City. Being close to the load center, Taguig is a strategic location, but it has major challenges in the construction of its associated 500 kV TL that traverses the portion of Laguna Lake. Another 500 kV drawdown substation will be constructed in Marilao, Bulacan.

Along with the support given to grid integration of new power plants, NGCP is paying special attention to strengthening the transmission facilities in Metro Manila, which is the country's load center. The existing 230 kV transmission line traversing from Quezon City to Muntinlupa City is a very critical line given its heavy loading condition and single-circuit configuration. Such conditions pose a great risk both on power quality and supply reliability in the area. In addition, the existing

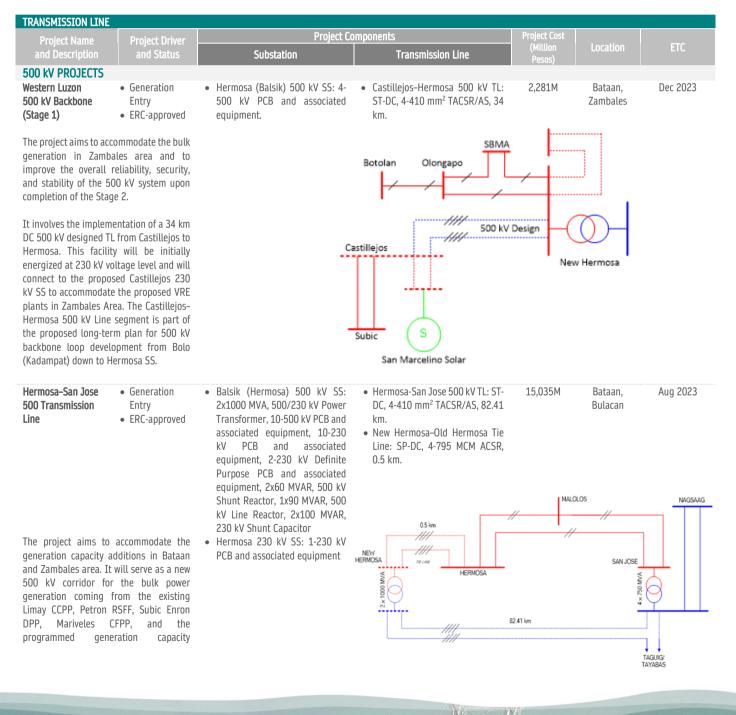
8.1 Transmission Outlook for 2023-2030

The major transmission projects covering the years 2023-2030 aim to support the adequacy and reliability of power supply to Metro Manila, which is the country's center of commerce and trade, and accommodate bulk generation capacities in the province of Batangas and in Bataan and Zambales area. 230/115 kV substations in Metro Manila are heavily loaded already and most have capacity expansion limitations, thus, the development of new Substations is very important in supporting load growth in the long term.

As one of the major infrastructures supporting the country's economy, the grid reinforcement projects that ensure the long-term adequacy, reliability, and security of power supply in Metro Manila can be regarded as "projects of national significance". As can already be expected in a highly urbanized area, securing the right-of-way (ROW) for new transmission facilities is increasingly becoming difficult. It is therefore important to immediately start its implementation to realize these important transmission development plans and it should be coupled with support from the local and national government. Aside from Taguig EHV and Marilao EHV, the proposed new facilities include Antipolo, Pasay, and Navotas substations which would also involve the implementation of associated 230 kV transmission lines.

After Metro Manila, together with the industrialized areas of Cavite and Laguna, the province of Pampanga is expected as the next major load growth area. In the longterm, new 230 kV backbone and new 230/69 kV substations would be needed for Porac and Clark to support the load increase in the coming years. Other provinces, on the other hand, will be supported by the installation of additional transformers at existing substations or the development of new substations and reinforcements of the 69 kV TL.

To help improve the system reliability and to maintain the power quality within the grid code-prescribed standards, included in the development plans are the implementation of transmission looping configurations for the 500 kV system, upgrading of old transmission lines and substations as well as installation of reactive power compensation equipment at various Substations.


Three major 500/230 kV drawdown substations will be developed around Metro Manila to meet its forecasted load growth. These will be in Taguig City, Marilao Bulacan, and Silang Cavite, which will also be complemented by the development of additional 230/115 kV drawdown substations in Antipolo, Navotas, and Pasay.

The reliability of power transmission delivery to Metro Manila will be addressed through the development of new transmission corridors in Metro Manila such as the Silang– Taguig 500 kV TL, Taguig–Taytay 230 kV TL.

Outside Metro Manila, several drawdown substations will also be developed to address the forecasted load growth. These are the Lal-lo 230 kV SS (Tuguegarao – Lal-lo 230 kV TL Project) in Cagayan, Pinili 230 kV SS in Ilocos Norte, San Simon and Porac 230 kV SS in Pampanga, Capas 230 kV SS in Tarlac, Kawit 230 kV SS in Cavite, Sampaloc 230 kV SS in Nueva Ecija, Castillejos 230 kV SS in Zambales, Tanauan 230 kV SS in Batangas, and Abuyog 230 kV SS in Sorsogon. In addition to these substations, new 69 kV transmission facilities will also be developed. Second, the development of the Tuy 500 kV SS (Stage 2) will be developed to accommodate the generation capacities in the province of Batangas. The project involves the implementation of the 500 kVdesigned Tuy–Silang 500 kV TL. It will also be complemented by the development of a new 500 kV transmission corridor from Pinamucan to Tuy 500 kV SS.

Lastly, to accommodate generation capacities in Bataan and Zambales Area, the Mariveles–Hermosa–San Jose 500 kV TL Projects and Western 500 kV Backbone will be developed.

Table 8.1 List of Luzon transmission projects for the period 2023-2030

M / M	
Project Components	Project Cost
Substation Transmission Line	(Million Location ETC Pesos)
Power System StudyFeasibility Study	194M Bataan, Jun 202 Cavite
 Castillejos 500 kV SS: 2x1,000 Castillejos-Bolo 500 kV TL DC, 4-410 mm² TACSR, 174 DC, 4-410 mm² TACSR, 174 Transformers 14-500 kV PCB and associated equipment. 2x90 	
	HERMOSA
• Castillejos 230 kV SS: 2x200	, ,,,,
A-230 KV PCB and associated	
equipment 4-230 kV PCB and	· · · · · · · · · · · · · · · · · · ·
associated equipment • Hermosa 500 kV SS: 4-500 kV	CASTILLEJOS
PCB and associated equipment	240 240
 Pagbilao 500 kV SS: 4-500 kV PCB and 4-230 kV PCB and associated equipment, 1x30 MVAR Line Reactor and associated equipment Dasmarinas/Ilijan 500 k' Extension: ST-DC, 4-795 ACSR, 21 km Naga 230 kV TL Extension DC, 4-795 MCM ACSR, 1.5 k 	MCM Province
Contraction of the second seco	
	PAGBLAD PAGBLAD MAGA
	Substation Transmission Line • Power System Study • Feasibility Study • Feasibility Study • Castillejos-Bolo 500 kV T • Castillejos 500 kV SS: 2x1,000 MVA, 500/230 kV Power Transformers 14-500 kV PCB and associated equipment. 2x90 MVAR, 200 kV Shunt Capacitor, 2x60 MVAR, 500 kV June Reactor • Castillejos-Bolo 500 kV T • Castillejos 230 kV SS: 2x200 MVAR, 200 kV Shunt Capacitor, 4-230 kV PCB and associated equipment Bolo 500 kV SS: 4-500 kV PCB and associated equipment BOLO • Hermosa 500 kV SS: 4-500 kV PCB and associated equipment • Dasmarinas/Ilijan 500 k Extension: ST-DC, 4-795 ACSR, 21 km • Pagibilao 500 kV SS: 4-500 kV PCB and 4-230 kV PCB and associated equipment, 1x30 MVAR Line Reactor and associated equipment • Dasmarinas/Ilijan 500 k Extension: ST-DC, 4-795 MCM ACSR, 15 k • Naga 230 kV TL Extension associated equipment • Naga 230 kV TL Extension DC, 4-795 MCM ACSR, 15 k

TRANSPORT Traject Char Project Components Project Components Pro						
Proceeding Procession Statistic Statistic Notice Procession						
 Relacion of Sect. • System Westang Relating Hermos-Duhat 230 W PTL: 234M Bataan Dec 2023 (23 W Transmission Learning and proved differences and proved	and Description and Status			(Million	Location	ETC
read widening project along Jose Adad Santos Avenue III. San Fernando Exp. This Her modes the read. The project involves th	Relocation of SteelSystemPoles alongReliabilityHermosa-Duhat 230ERC-		230 kV, SP-SC, 2-795 MCM, 20	234M	Bataan	Dec 2023
 230 kV Transmission and Load Line and Load Save Transformers, 6: 230 kP JSB and associated equipment. ERC-approved ERC-approved The project aims to address the imminent overloading of the Tuguegarano 230 kV SS: 3-230 kV PCB and associated equipment. Tuguegarano 230 kV SS: 3-230 kV SS: 3-230	road widening project along Jose Abad Santos Avenue in San Fernando, Pampanga which left several steel poles in the middle of the road. The proposed relocation will eliminate the danger brought about by the remaining steel pole structures as well as to prevent accidents that will cause power interruption to the Hermosa–Duhat 230 kV Line. The project involves the relocation of steel poles structures along the road ROW limit of the DPWH in San Fernando–Gapan–Olongapo National Road, San Fernando City. This will be implemented through re-routing of the affected line using new steel pole	HERMOSA	, T/L Along Jose Abad		DUHAT	
kV Transmission Line Upgrading Project Reliability • ERC- approved PCB and associated equipment ST/SP-DC, 2-410 mm² TACSR, 11 km. The project aims to upgrade the existing line to address its old age condition and to maintain the N-1 contingency provision taking into consideration the repowering of Ambuklao HEPP and the proposed generation capacity additions in the Cagayan Valley area. Thus, during maximum generation of the power plants, the project aims to prevent the overloading PCB and associated equipment ST/SP-DC, 2-410 mm² TACSR, 11 km.	 230 kV Transmission and Load Growth ERC-approved The project aims to address the imminent overloading of the Tuguegarao-Magapit 69 kV Line due to the forecasted load growth in the northern part of Cagayan Province. The project also aims to improve the power quality and reliability of supply in the area which is presently being served by a long 69 kV line. This project will become an integral part of the development of the Northern Luzon 230 kV loop which will link the north-western and north-eastern 230 kV backbone. The project involves the construction of a 64 DC 230 kV TL from Tuguegarao to Lallo and the development of Lal-lo 230/69 	 230/69-13.8 kV Transformers, 6-230 kV PCB and associated equipment, 8-69 kV PCB and associated equipment Tuguegarao 230 kV SS: 3-230 	ST-DC, 1-795 MCM ACSR, 64 km.	solito 2 Isagela 2 x 100 M/V	pelos 2 Cagelos 2 Canaldinigan Sta. Ana/Geza	Sep 2024
	kV Transmission Line Upgrading Project • ERC- approved The project aims to upgrade the existing line to address its old age condition and to maintain the N-1 contingency provision taking into consideration the repowering of Ambuklao HEPP and the proposed generation capacity additions in the Cagayan Valley area. Thus, during maximum generation of the power plants,		ST/SP-DC, 2-410 mm ² TACSR, 11 km.	AMBUKL AN 11 km BINGA 40 km	5	Aug 2024
1/4/ N/ N/4/				X		

X

TRANSMISSION LINE		Droject (omponents Project Cost	
Project Name and Description	Project Driver and Status	Substation		ETC
nder N-1 contingency utage of one 230 kV circu				
he project involves the co m, 230 kV, DC line, ste eplace the old Ambuklao ne which presently convey ower of Ambuklao and N ne transmission backbon rid.	el tower TL to -Binga 230 kV rs the generated Magat HEPPs to			
230 kV Transmission Line	 System Reliability and Generation entry ERC- approved 	 San Manuel 230 kV SS: 2-230 kV PCB and associated equipment Binga 230 kV SS: 1x50 MVA 230/69kV Transformer, 14-230 kV PCB and associated equipment 	Binga-San Manuel 230 kV TL: ST- 2,636M Benguet Aug DC, 2-410 mm ² TACSR, 40 km. AMBUKLAO	g 2024
The project upgrading ain 1 contingency during dispatch of the gene barticularly HEPPs, in no existing line, as well as the 55, which were construct 1956, have already se developments in the affecting the power flow Manuel 230 kV line. The repowering of Ambuklao capacity of 105 MW (previ- capacity) and the comple HEPP expansion to an addor of 25 MW, and the ot developments in Cagayan This project involves the c	the maximum erating plants, orth Luzon. The ne PCB at Binga ted/installed in surpassed the er, there are power plants v at Binga-San ese include the HEPP to a new iously at 75 MW letion of Binga ditional capacity her generation Valley area.		11 km BINGA SAN MANUEL tie-line NAGSAAG	
This project involves the c new 40 km DC Binga-San FL using a new ROW, nstallation of switching fa and San Manuel SS.	Manuel 230 kV including the			
230 kV TL	 System Reliability ERC- approved 	 Nagsaag 500 kV SS (Expansion): 1x600 MVA, 500/230-13.8 kV Transformers, 2-500 kV and 8- 230 kV PCB and associated equipment, 	 San Manuel-Nagsaag 230 kV 1,793 M Pangasinan Dec 2 Tie-Line Upgrading: SP-DC, 2- 410 mm² TACSR/AS, 0.6 km Binga 230 kV TL Extension: SP- DC, 2-795 MCM ACSR/AS, 0.8 km. 	2025
The project aims to overloading of the San M 230 kV tie line, Pantabang 230 kV Line, and the Nags rransformer. During M condition and the hyd maximized, outage of th Nagsaag 230 kV tie line v overloading of the SC Cabanatuan 230 kV line. Dutage of the Pantabang 230 kV line will result in of the San Manuel-Nags ine. Furthermore, during l	fanuel-Nagsaag gan-Cabanatuan aag 500/230 kV aximum North ro plants are e San Manuel- vill result in the Pantabangan- Conversely, the gan-Cabanatuan the overloading aag 230 kV tie	• San Manuel 230 kV SS (Expansion): 3-230 kV PCB and associated equipment.	BINGA BINGA AGD MW SAN ROQUE SAN MANUEL O.8 km PANTABANGAN CONCEPCION CONCEPCION MEXICO	

X

U

TRANSMISSION LINE				
Project Name Project Driver and Description and Status	Project Co Substation	mponents Transmission Line	Project Cost (Million Location Pesos)	ETC
condition and the hydro plants are minimized or completely not operating, the San Manuel 500/230 kV transformer will serve as a drawdown SS in central Luzon. The outage of one circuit of the Nagsaag-San Jose 500 kV line will result in the overloading of the 1x600 Nagsaag 500/230 kV transformer. The Project involves the installation of an additional 600 MVA 500/230-13.8 kV transformer at Nagsaag EHV SS and construction of the new San Manuel-Nagsaag 230 kV Tie- Line.				
Santiago-Magat 230 kV Transmission Line Reconductoring Reliability and Security	 Santiago 230 kV SS: 3-230 kV PCB and associated equipment Magat 230 kV SS: 6-230 kV PCB and associated equipment 	• Santiago-Magat 230 kV TL, ST- DC, 1-410 mm ² STACIR, 14.5 km	2,627M Isabela	Jun 2025
The project aims to upgrade the existing Santiago-Magat 230 kV TL to accommodate new generation plants that will be connected in Magat 230 kV Switchyard, such as the ±20 MW Magat BESS, 120 MW Alimit Hydro Plant and the 20 MW Olilicon HEPP.			GAT 10 mm ² STACIR, 14.5 km 30	
The project involves the reconductoring of Santiago-Magat 230 kV TL from ST-DC, 1- 795 MCM ACSR to 1-410 mm2 Super Thermal Alloy Conductor Invar Reinforced (STACIR)		Contraction Alimit	IBONG	
Taguig-Taytay 230 kV Transmission Line• Load Growth System Reliability and Security • Filed to ERC	• Taytay 230 kV SS: 6-230 kV PCB and associated equipment	• Taguig-Taytay 230 kV TL: SP-DC, 2-610 mm ² TACSR, 10 km	3,360M Rizal	Dec 2030
The project aims to address the overloading of the Taguig-Paco 230 kV TL segment during N-1 contingency under maximum south generation condition specifically with the incoming generating plants in the provinces of Batangas and Quezon.	Mu	Hitelana Constant	Antipolo	
The project involves the construction of a 230 kV line from the proposed Taguig SS to Taytay SS. Taytay SS will be expanded for up to two bays to allow the termination of the incoming lines from the proposed Taguig SS.		Bitan	Taylar	
69 kV PROJECTS Clark-Mabiga • Load Growth	Clark 220 W/ SC (Evenneion)	- Clark Mabica 60 W/ TL 4 COO	F40M Demosra	a Feb 2025
Clark-Mabiga • Load Growth 69 kV Transmission • ERC- Line approved	 Clark 230 kV SS (Expansion): 1x300 MVA 230/69-13.8 kV Transformer, 1-230 kV PCB and associated equipment, and 3-69 kV PCB and associated equipment 	Clark-Mabiga 69 kV TL: 1,600 mm ² Underground Cable System, UC-DC, 6.0 km.	549M Pampang	α ΓΕΊ ΖΟΖΟ

X

2

Project Name	Project Driver	Project Co	mponents	Project Cost	
and Description	and Status	Substation	Transmission Line	(Million Pesos)	Location ETC
The project aims to prov capacity reinforcement Clark 69 kV Line wi Pampanga Rural E Cooperative, Inc. (PRESC Electric Cooperative, I Pampanga II Electric ((PELCO II), Angeles Ele (AEC), Quanta Paper (Clark Electric Developm (CEDC). This addresses ti Angeles and Mabalacat, new industries in Clark F improve the power qualit area. The Project involve of a new transformer at the construction of a 69 Clark SS up to the are Pampanga.	to the Mexico- hich is serving (lectric Service CO), Pampanga I Inc. (PELCO I), Cooperative, Inc. ctric Corporation Corporation, and hent Corporation he load growth in together with the reeport Zone and cy of supply in the st he installation Clark 230 SS and kV line from the	CLARK 1 x 300 MVA 1 x 100 MVA	6 km	N.O N.C N.C	CEDC KALAW CEDC INGASCO AEC PETERSVILLE CEDC IE-5 CEDC YOKOHAMA
Nagsaag-Tumana 69 kV Transmission Line The project aims to cate demand of an area in existing Nagsaag-Umin which delivers power Pangasinan III Elect (PANELCO III) Urdaneta Central Pangasinan Ele (CENPELCO) Bautista and already be overloaded. This 69 kV TL Proje	Pangasinan. The Igan 69 kV TL to the loads of tric Cooperative and Carmen, and ctric Cooperative d Bayambang will	• Nagsaag 69 kV SS: 1-69 kV PCB and associated equipment	• Nagsaag-Tumana 69 kV TL: 6 kV, ST/SP-DC1, 1-795 MC ACSR, 23 km.	M BUBSTATION BUBSTATION ROBALESICE PLANT ROBAL	Pangasinan Mar 2024
construction of a new lin SS going to the area of Tu Pangasinan.	ne from Nagsaag		CENTELCO BAUTISTA PANELCO CARMED	NO STR No. 215	NIELCO II AANGOBONO PANELCO II TAYUS
Eastern Albay 69 kV Line Stage 2	 System Reliability ERC- approved 	• Sto. Domingo SS: 2-69 kV PCB and associated equipment.	 Sto. Domingo-Tabaco 69 kV T ST-SC, 1-336.4 MCM ACSR, 1 km. 		Albay Sep 2024
The project aims to reliable transmission eastern coast of Alba increasing eco-tourism the area which include th Estate and Spa in Cagr Eastern Albay 69 kV TL into two stages. Stage development of the Sto. I a 10 MVA, 69/13.8 kV tra Single-Circuit (SC) Dara 69 kV TL which will be composed 1.336.4	corridor in the y to serve the developments in ne Misibis Resort, raray Island. The Project is divided 1 includes the Domingo LES with nsformer and the ga–Sto. Domingo 21 km long and	PAWA	TIWI Substation	TABA	CO 18 KM

LIGAO SWITCHING

LIGAO

composed 1-336.4 MCM ACSR/AS

conductor. Stage 2 meanwhile includes the development of the SC Sto. Domingo-

Tabaco 69 kV Line which will be 18 km long and composed of 1-336.4 MCM

ACSR/AS conductor.

Chapter 8

STO. DOMINGO

LOAD-END

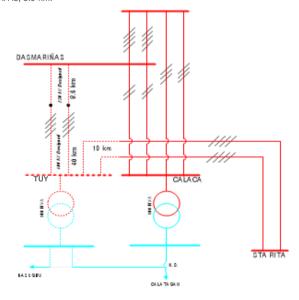
DARAGA

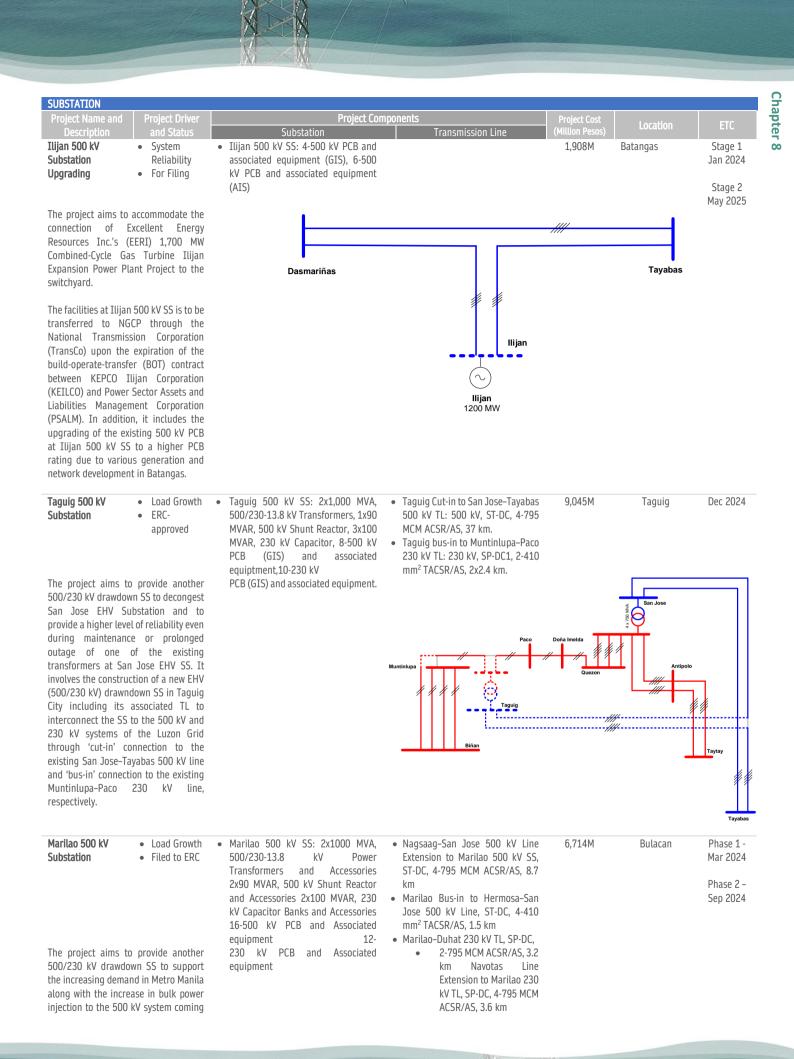
TRANSMISSION LINE						Cha
Project Name Project Driver and Description and Status	Project Co Substation	mponents Transmission Line	Project Cost (Million Pesos)	Location	ETC	Chapter 8
La Trinidad-Calot 69 • Load Growth KV Transmission Line • ERC- approved	• La Trinidad 69 kV SS: 1-69 kV PCB and associated equipment	La Trinidad-Calot 69 kV TL: ST/SP- DC, 1-795 MCM ACSR/AS, 17 km _{BUS-TIE}	1,726M	Benguet	Dec 2028	00
The La Trinidad–Calot 69 kV TL Project aims to improve the reliability and increase the transfer capacity of the 69 kV TL serving the loads of BENECO's Lamut, Sanitary Camp and Irisan LES, and power generations from HEDCOR's Asin and Ampohaw. The project involves the construction of a 17 km, 69 kV, double- circuit, steel tower/steel pole transmission line from La Trinidad SS to Calot, Sablan, Benguet. It also involves the expansion of the 69 kV switchyard for the termination of the new La Trinidad– Calot 69 TL.	C. IR HEI	LA TRINIDAD BUS - I IE BUS - I IE SWITCH AIR BREAK SWITCH COR AIR BREAK SWITCH SWITCH COR AIR BREAK SWITCH	-			
 Concepcion-Sta. Ignacia Filed to ERC 69 kV Transmission Line The project aims to cater to the growing demand in Tarlac. The existing Concepcion-Camiling 69 kV TL which delivers power to the loads of Tarlac I Electric Cooperative, Inc. (TARELCO I) will already be overloaded. The Concepcion- Sta. Ignacia 69 kV TL Project involves the construction of a new DC 69 kV TL from Concepcion SS up to Camiling, Tarlac. It will unload the existing Concepcion- Paniqui 69 kV TL by catering the loads of TARELCO Sta. Ignacia, Camiling, Mayantoc, Paniqui, Anao and Moncada. 		• Concepcion-Sta. Ignacia 69 kV TL: 69 kV, ST-DC, 1-795 MCM ACSR, 33 km.	1,083M	Tarlac	Phase 1 Mar 2024 Phase 2 Dec 2024	
 Load Growth 69 kV Transmission Filed to ERC Line The project aims to address the anticipated overloading of the Tuguegarao-Tabuk 69 kV TL brought by the continuous load growth in the franchise area of Cagayan 1 Electric Cooperative, Inc (CAGELCO I) and Kalinga-Apayao Electric Cooperative, Inc. (KAELCO). The project involves the development of a two (2) part segment, 69 kV TL from Tuguegarao SS to Enril. The first segment consists of a 14 km, 1-795 	 Tuguegarao 69 kV SS: 2-69 kV PCB and associated equipment San Pablo 69 kV SY: 8-69 kV PCB and associated equipment 	 Tuguegarao-San Pablo SWS 69 kV TL: SP-DC, 1-795 MCM ACSR, 14 km San Pablo SWS-Enrile 69 kV TL: SP-SC, 1-795 MCM ACSR, 16 km 	2,945M Piat 29 km Enrifie 0 18 km 3.49 km 3.49 km San Pablo Solar L1- San Pablo Solar L2- Tam	n 5.62 km 5. San Pablo	6 km 0.41 km 3x100 1 90 km 4.46 km - () 14 km - () 5 88 km	D- D-

N

X

TRANSMISSION LINE					
Project Name Project Driver	Project Co	omponents	Project Cost	Lecotion	FTC
and Description and Status	Substation	Transmission Line	(Million Pesos)	Location	ETC
MCM ACSR, DC Conductor from Tuguegarao SS to the New San Pablo SWS. While the second segment is planned to be a 16 km, 1-795 MCM ACSR, Single- Circuit Conductor from the New San Pablo SWS to the tapping point at Enrile.					
Daraga-Bitano 69 kV Transmission Line • Filed to ERC	• Daraga SS: 2-69 kV PCB and associated equipment	• Daraga-Bitano 69 kV TL: SP-SC, 1-795 MCM ACSR, 6 km	760M	Albay	Dec 2030
The project aims to cater to the load growth of Albay Electric Cooperative, Inc. (ALECO) and other directly connected industrial and commercial loads in Albay	DARAGA SUBSTATION	/ 6 km			
Province. It also seeks to address the overloading of the existing Daraga-					
Washington 69 kV TL. The project involves the development of a new single circuit, 6 km 1-795 MCM ACSR 69 kV TL from Daraga 69 kV SS to Bitano Load-End of ALECO.		Upgrading NO Washington ELVI	PMC	Bitano	


SUBSTATION						
Project Name and Description	Project Driver and Status	Project Com Substation	ponents Transmission Line	Project Cost (Million Pesos)	Location	ETC
500/ 230 kV PROJEC	TS					
Tuy 500/230 kV Substation (Stage 1)	 Generation Entry Filed to ERC 	 Tuy SS: 1x100 MVA, 500/ 230-69 kV Transformer, 12-230 kV PCB and associated equipment, 3-69 kV PCB and associated equipment. Dasmariñas SS Expansion: 2-230 kV PCB and associated equipment. 	 Tuy-Silang (initially 230 kV-energized), 500 kV: ST-DC, 4-410 mm² TACSR, 40 km. Silang-Dasmariñas, 230 kV: ST-DC, 4-410 mm² TACSR/AS, 8.6 km Sta. Rita 230 kV Line Extension: 	6,375M	Batangas, Cavite	Dec 2024
The project aims to connection of the 2 Coal Plant and allow	x350 MW SRPGC	• Sta. Rita Switchyard Expansion: Line Protection and Communication System.	230 kV, ST-DC, 4-795 MCM ACSR/AS, 10 km. • Calatagan/ Nasugbu Line			


Coal Plant and allows full dispatch of bulk generation capacity additions in Batangas. The generation capacity additions turn Calaca SS into a merging point of more than 2,000 MW of power generation. The existing outgoing 230 kV lines going to Dasmariñas and Biñan has capacity constraints to accommodate the full dispatch of the plants considering the single outage

contingency criterion.

It involves the development of Tuy 500 kV SS, which initially involves 230 kV facilities only. It also involves the development of Tuy-Dasmariñas 500 kV designed TL but to be initially energized at 230 kV. Furthermore, a new 100 MVA, 230/69-13.8 kV Power Transformer is to be installed to provide N-1 contingency to the existing 100 MVA Power Transformer at Calaca SS.

 Calaca SS: Replacement of Current Transformers and Bus works. Calatagan/ Nasugbu Line Extension: 69 kV, SP-DC, 1-795 MCM ACSR/AS, 3.5 km.

SUBSTATION

ject Name and Description from the new power plants in the grid. It also aims to address the initial line by-pass scheme at San Jose SS under the project Hermosa-San Jose 500 kV TL which is brought about by the GIS expansion limitation at San Jose 500 kV SS. In addition, it reduces the criticality of the ring-bus configured San Jose 500 kV SS as the Marilao SS will now serve as the main node in the arid.

It involves the construction of Marilao 500 kV SS to serve as a new corridor of generation supply in the northern region. It also includes the bus-in of the new SS along the Hermosa-San Jose 500 kV TL, transfer of Nagsaag 500 kV line from San Jose EHV SS to the new SS, and termination of 230 kV lines going to Duhat, Marilao, Navotas, Quezon, and Hermosa SS.

Pinamucan 500 kV • Generation Substation

Entry • Filed to ERC

The project aims to accommodate the connection of new LNG Plants in Batangas City Area. It also provides a connection point of other proposed bulk capacity generation in Batangas. In addition, it will also serve as the connection point of Batangas-Mindoro Interconnection Project (BMIP).

It involves the development of a new 500 kV SS in Pinamucan, Batangas with 2x1,000 MVA 500/230 kV transformer capacity. This SS is to be connected to the 500-kV system through bus-in along the Ilijan-Dasmariñas and Ilijan-Tayabas 500 kV TL. In addition, a 230/69 kV SS with 2x100 MVA transformer capacity is to be developed to serve the loads in the area.

Tuy 500/230 kV	٠	Generation
Substation (Stage		Entry
2)	٠	Filed to ERC

The project aims to relieve the overloading of Tuy-Silang 230 kV Line due to the connection of bulk generation capacity additions in Batangas. The project will allow the full dispatch of bulk generations coming from Batangas.

- Tuy 500 kV SS: 3x1000 MVA 230/69-13.8 Power kV Transformer 8-500 kV PCB and associated equipment 1-230 kV PCB and associated equipment.
- Silang 500 kV SS: 4-500 kV PCB and associated equipment

500/230 kV Power MVA. Transformer, 2x100 MVA, 230/69 kV Power Transformer, 14-500 kV PCB and associated equipment, 10-230 kV PCB and associated equipment, 6-69 kV PCB and associated equipment

• Pinamucan 500/230 kV SS: 2x1000

Project Components

MARIL AO (DUHAT)

Transmission Lin

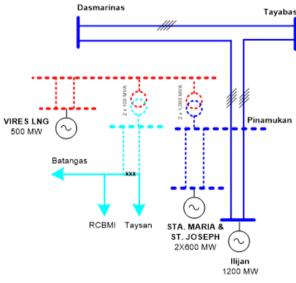
MARILAO

NAVOTAS

3.2 kn

Substation

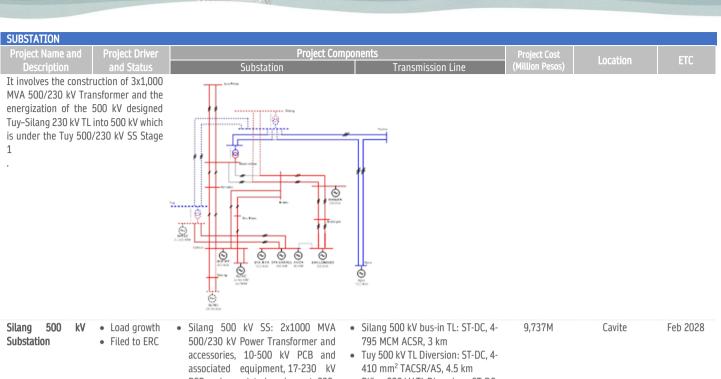
HERMOSA


Project Cost (Million Pesos

NAGSAAG

SAN JOSE

Dec 2025 Phase 2 Dec 2027


Phase 1

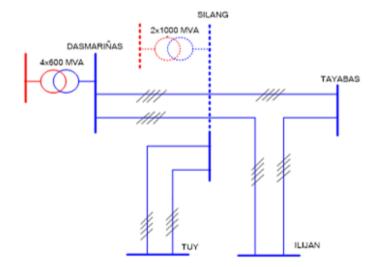
7.442M

Oct 2030

Batangas

The project aims to address the overloading of the Dasmariñas 500/230 kV SS. It also serves as the termination of the 500 kV line emanating from the proposed Tuy 500 kV SS, which supports the entry of additional generation capacities in Batangas Area.

It involves the development of a new 500/230 kV SS in Silang, Cavite that decongests the Dasmariñas 500/230 kV SS. The new Silang 500 kV SS is to 'bus-in' along the Dasmariñas-Ilijan and Dasmariñas-Tavabas 500 kV TL and has an initial capacity of 2x1000 MVA transformers. To effectively decongest the Dasmariñas 500/230 kV SS, the Biñan-Dasmariñas 230 kV TL is to be diverted from Dasmariñas 230 kV SS going to the proposed new 230 kV SS under Silang 500 kV SS Project.


Sta. Maria 500 kV • Generation

- Substation
- Entry Filed to ERC

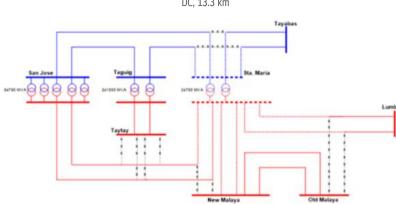
The project aims to cater the upcoming Generation Potential in Quezon, Rizal and Laguna Area. Approximately 4,650 MW total potential generation is forecasted on the vicinity and it requires a hub to transmit their generation to the Grid.

It involves the development of a new drawdown SS at Sta. Maria, Laguna

- PCB and associated equipment, 230 MVAR, 500 kV Line Reactor 3x100 MVAR, 230 kV Shunt Capacitor
- Biñan 230 kV TL Diversion: ST-DC.
- 4-410 mm² TACSR/AS, 4.5 km

• Sta. Maria SS: 2x750 MVA, 500/230 kV, Power Transformers, 18-500 kV PCB and associated equipment 18-230 kV PCB and Associated equipment

- New Malaya SS Expansion: 2-230 kV PCB and associated equipment
- Sta. Maria 'Bus-in' to Tayabas-San Jose 500 kV TL: 500 kV, 4-795 MCM ACSR, ST-DC, 2x 1.0 km


15,850M

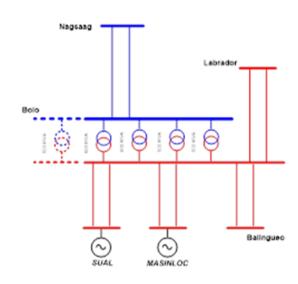
Laguna

- . Sta. Maria-Antipolo 230 kV Line diversion through the Old Malaya-Taytay 230 kV Line and the portion Old Malaya-Lumban 230 kV TL: 230 kV, 4-795 MCM ACSR, ST-DC, 3 km Swinging of Lines in Malaya and Taytay SS, 230 kV: 4-795 MCM ACSR, ST-DC, 0.5 km
- Sta. Maria-Lumban 230 kV Line diversion through the portion Old Malaya-Lumban 230 kV TL: 230 kV, 4-795 MCM ACSR, ST-DC, 3 km

Dec 2030

Bolo 5th Bank

500 kV TL.


 Bolo SS: 1x600 MVA 500/230 kV Transformer and Accessories 22-230 kV PCB and associated equipment

The project aims to accommodate the additional generation in the northwestern region of Luzon.

Generation

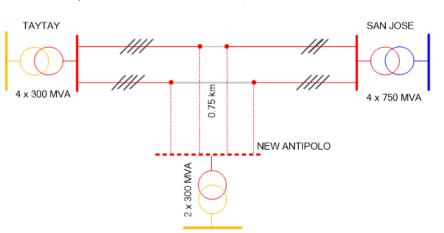
entry

It involves the construction of an additional 1x600 MVA in Bolo 500 kV SS. Presently, the Bolo 500 kV SS has 4x600 MVA 500/230 kV power transformers serving the bulk generation capacities in Pangasnan.

230 kV PROJECTS

- Antipolo 230 kV Load Growth Substation • ERC-
 - ERCapproved

The project aims to decongest heavily loaded 230 kV delivery substations serving Meralco's 115 kV distribution Substations in Metro Manila. The SS caters to the load growth in the Sector 2 of MERALCO.


The project involves the new 230 kV SS that will bus-in along the existing ST-DC San Jose-Taytay 230 kV line with 4-794 MCM ACSR conductors. Initially, the SS and also be installed with Capacitor for voltage support. To draw supply from Antipolo, MERALCO will be

- Antipolo 230 kV SS: 12-230 kV PCB and associated equipment, 2x100 MVAR 230 kV Capacitor Banks.
- Bus-in point along San Jose- 919M Rizal Sep 2023 Taytay 230 kV TL: ST-DC, 4-795 MCM ACSR/AS, 0.75 km.

2,521M

Pangasinan

Jan 2029

SUBSTATION											
Project Name and Description	Project Driver and Status	ç	Substatio	on	Projec	t Con	npor	ents Transmission Line	Project Cost (Million Pesos)	Location	ETC
transformers and 1 will also put-up l	MVA 230/115 kV 15 kV SS. MERALCO ine connections to kV network in the										
Tiwi Substation Upgrading	Generation Entry and	iwi A SS: ssociated	4-230		PCB equipm		•	Daraga/Naga – Tiwi C Line Extension: 230 kV, ST-DC, 1-795	1,107M	Albay	Jun 2023

The project aims to upgrade the old
and deteriorated SS equipment at Tiwi
A and C Substations to improve the
reliability of the system and augment
the power requirement of
Malinao/Ligao LES by the installation
of additional power transformer at Tiwi
C SS and clearly identify asset
boundaries within the Tiwi Geothermal
Power Plant Complex through the
construction of NGCP's own control
facilities.

System

ERC-

Reliability

approved

(Replacement)

associated

Tiwi C SS: 12-230 kV PCB and

(Replacement), 3-230 kV PCB and

associated equipment (New), 1-69 kV

PCB and associated equipment, 1x50 MVA, 230/69-13.8 kV Power

Transformer and Accessories

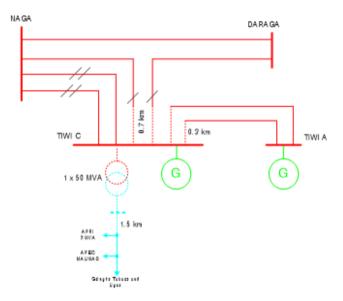
equipment

The project involves the upgrading of equipment at Tiwi A and C Substations and installation of 50 MVA, 230/69-13.8 kV Power Transformer at Tiwi C SS. This project also involves the diversion of the Daraga/Naga 230 kV Line to Tiwi C SS and extension of the Malinao/Ligao 69 kV Line from Tiwi A to Tiwi C SS.

North Luzon 230 kV	 Load Growth 	
Substation	and System	
Upgrading	Reliability	
	• FRC-	

approved

The project aims to increase the reliability of the concerned Substations with old and obsolete PCB and associated equipment. The project also caters to the load growth and provides N-1 contingency to various Substations in NGCP's North Luzon Region, Bauang, Gamu, Bayombong, Hermosa, Doña Imelda, Malaya, San Jose, Quezon, Balingueo, Bacnotan, Labrador, and San Rafael substations.


The project involves transformer installations, and replacement and rearrangements of PCB to ensure

Stage 1: • Bauang 230 kV SS (Replacement): 1x100 MVA 230/115/69-13.8 kV Transformer, 7-230 kV PCB and associated equipment

- Gamu 230 kV SS: 10-230 kV PCB and associated equipment, 3-69 kV PCB and associated equipment
- Bayombong 230 kV SS: 5-230 kV PCB and associated equipment., 2-69 kV PCB and associated equipment
- Hermosa 69 kV SS: 11-69 kV PCB and associated equipment
- Malaya 230 kV SS (Expansion), 1x300 MVA, 230/115-13.8 kV Transformer, 15-230 kV PCB and associated equipment, 1-115 kV PCB and associated equipment
- Quezon 230 kV SS (Expansion): 3-230 kV PCB and associated equipment
- San Jose 230 kV SS (Expansion): 1x300 MVA, 230/115-13.8 kV

	MCM ACSR/AS, 0.9 km
•	Tiwi A – Tiwi C Line Extension: 230
	kV, ST-DC, 1-795 MCM ACSR/AS,
	0.4 km
•	Malinao/Ligao – Tiwi C Line

 Malinao/Ligao – Tiwi C Line Extension 69 kV, SP-SC, 1-336.4 MCM ACSR/AS, 1.65 km

4,659M La Union, Isabela, Nue Vizcaya, Bata

Dec 2023

Isabela, Nueva Vizcaya, Bataan, Apr 2024 Quezon, Pangasinan, Bulacan

CUDCTATION					0
SUBSTATION Project Name and Project Driver	Project Compone	ents	Project Cost		Chapter 8
Description and Status	Substation	Transmission Line	(Million Pesos)	Location ETC	ter
reliability and flexibility of operation on the concerned substations.	Transformer, 1-230 kV PCB and associated equipment, 10-115 kV PCB and associated equipment				00
	 Stage 2: Bacnotan 230 kV SS (Expansion): 1x100 MVA 230/69-13.8 kV Transformer, 2-230 kV PCB and associated equipment, 8-69 kV PCB and associated equipment Balingueo 230 kV SS (Expansion): 1x100 MVA 230/69-13.8 kV Transformer, 5-230 kV PCB and associated equipment, 4-69 kV PCB and associated equipment Labrador 230 kV SS (Replacement): 1x100 MVA 230/69-13.8 kV Transformer, 5-230 kV PCB, 2-69 kV PCB and associated equipment San Rafael 230 kV SS (Expansion): 1x300 MVA 230/69-13.8 kV Transformer, 1-230 kV PCB, 2-69 kV PCB and associated equipment San Rafael 230 kV SS (Expansion): 1x300 MVA 230/69-13.8 kV Transformer, 1-230 kV PCB and associated equipment, 2-69 kV PCB 				
Pinili 230 kV • Load Growth Substation • Filed to ERC	230/69-13.8 kV Power Transformer, L 10-230 kV PCB and associated M equipment, 8-69 kV PCB and • F	Pinili Bus-in to San Esteban- Laoag 230 kV TL: ST-DC, 1-795 MCM ACSR/AS, 2x1.0 km Pinili-Currimao 69 kV TL: ST-DC, I-795 MCM ACSR/AS, 7.0 km	1,792M I	locos Norte Aug 202	:4
The project aims to address the	San Esteban				
forecasted loa d growth in Iloco region and to provide an alternati	55 km	30 km			
connection source for loads connected at Laoag SS during N-1 contingenc condition. This SS aims to replace the existing Currimao 115 kV SS as it can	1 kr				
no longer be expanded due to space constraints. This project also accommodates load growth and provide N-1 contingency for the load of Ilocos Norte Electric Cooperative (INEC), Ilocos Sur Electric Cooperative		Pinili 1x100 MVA	00Ex1	Ladag 1x300 MVA	
(ISECO) and Abra Electric Cooperativ (ISECO) and Abra Electric Cooperativ (ABRECO). Furthermore, the aforementioned serve as a connection point for new renewable energy plants		7 km	1x50 MVA	MWA	
The project involves the construction of a new 230/69 kV SS connected 'bus in' to the San Esteban-Laoag 230 k ¹ line and be arranged in a breaker-and		10.46 km 12.14 km 0.72 km 32 km 0.04 km 3.01 km	2.27 3.86 km km 0.53 km		

In to the San Esteban-Laoag 230 kV line and be arranged in a breaker-anda-half scheme. The project involves the installation of 2x100 MVA, 230/69-13.8 kV Power Transformer, 10-230 kV PCB, 5-69 kV PCB, and its associated equipment. The project also includes a 7 km, 69 kV, DC TL that aims to transfer loads of Currimao SS to Pinili SS.

Solar

L2

Solar Currimao

L1

÷

INEC

Batac

÷

INEC

San Nicolas

INEC

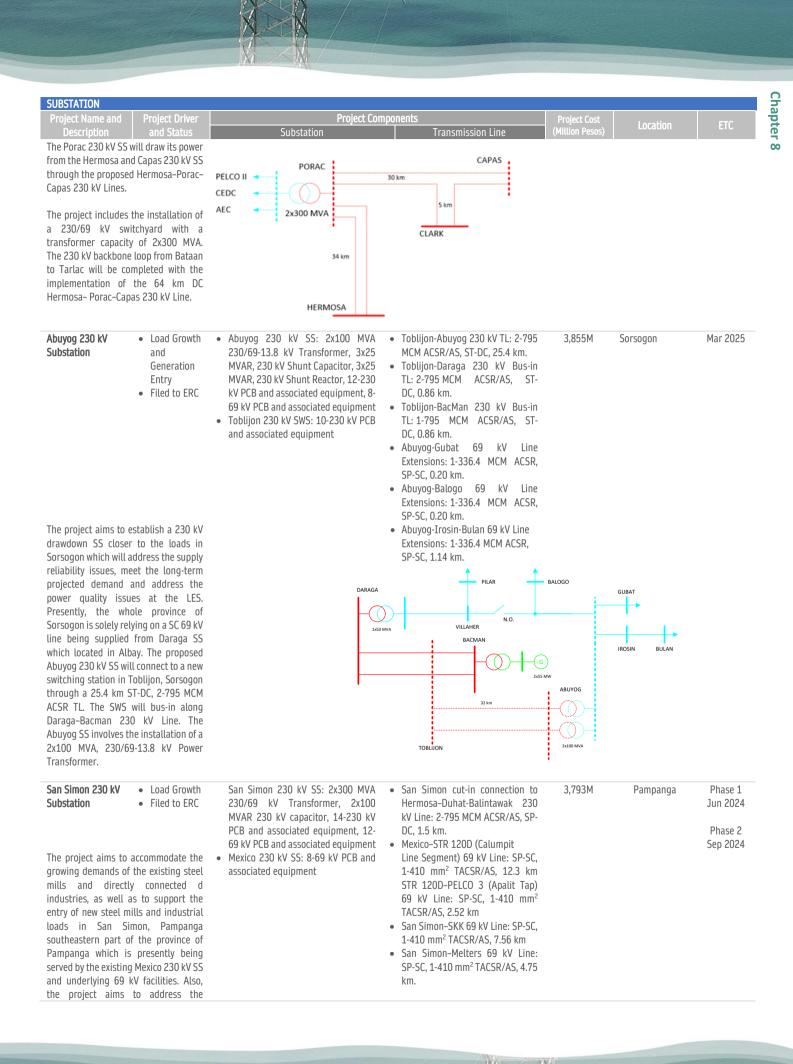
VENVI

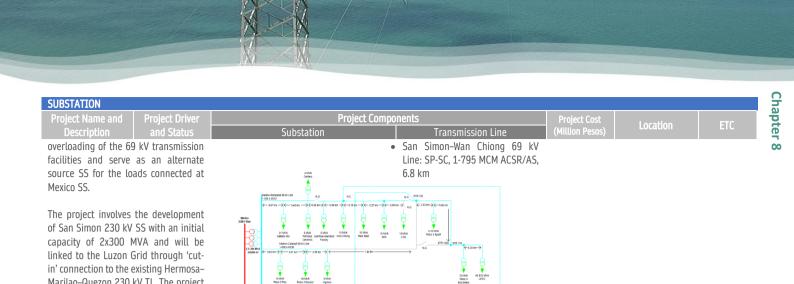
INEC

Lacag

Burgos Marcos

SUBSTATION						L C L
Project Name and Project Driver	Project Com	ponents	Project Cost	Levelle.	FTO	Chapter
Description and Status	Substation	Transmission Line	(Million Pesos)	Location	ETC	ter
South Luzon 230 kV Substation Upgrading ERC- tyapproved The project aims to address	 Stage 1: Las Piñas 230 kV SS: 1x300 MVA, 230/115-13.8 kV Power Transformer and Accessories Lumban 230 kV SS (Expansion): 1x100 MVA, 230/69-13.8 kV Power Transformer and Accessories, 1-230 kV PCB and associated equipment; 2-69 kV PCB and associated equipment San Juan (Kalayaan) S/Y: 8-230 kV 		2,025M	Laguna, Batangas, Albay, Quezon, Camarines Norte	Dec 2024	00
overloading of the remaining transformer in service or load dropping during outage of one power transformer unit in each concerned SS. The project includes capacity additions,	 Sun Stan (ktagatan) 5, 11 S Los kV PCB and associated equipment Naga 230 kV SS (Replacement), 1x300 MVA, 230/69-13.8 kV Power Transformer and Accessories, 1-230 kV PCB and associated equipment, 1- 69 kV PCB and associated equipment 					
replacement of old obsolete PCB, and re-configuration of the existing SS to ensure reliability and flexibility of the concerned substations.	 Stage 2: Daraga 230 kV SS, 1x100 MVA 230/69-13.8 kV Power Transformer and Accessories, 4-230 kV PCB and associated equipment, 2-69 kV PCB and associated equipment Gumaca 230 kV SS (Replacement): 1x100 MVA 230/69-13.8 kV Power Transformer and Accessories, 1-230 kV PCB and associated equipment, 2-69 kV PCB and associated equipment Labo 230 kV SS: Busworks, Protection and Control Equipment 					
South Luzon 230 kV Substation Upgrading 2Load Growth and Power Quality and Technology • Filed to ERC	 Lumban 230 kV SS (Replacement): 1x100 MVA 230/69-13.8 kV Power Transformer, 1-69 kV PCB and associated equipment Gumaca 230 kV SS (Replacement): 1x100 MVA 230/69-13.8 kV Power Transformer; 1-69 kV PCB and associated equipment 		6,622M	Batangas, Laguna, Quezon, Camarines Norte, Albay, Rizal and Metro Manila	Jun 2024 Dec 2024	
The project aims to caters the load growth and provides N-1 contingency to various Substations in NGCP's South Luzon Region in Lumban, Gumaca, Tuy, Labo, and Calaca Substations. Without the project, power interruption was experienced by customers during failure of existing transformers and PCB.	 Tuy 230 kV SS: 1x300 MVA, 230/69- 13.8 kV Power Transformer, 2-230 kV PCB and associated equipment, 3-69 kV PCB and associated equipment Calaca 230 kV SS (Replacement):, 2x300 MVA, 230/69-13.8 kV Power Transformer; 2-230 kV PCB and associated equipment, 7-69 kV PCB and associated equipment Labo 230 kV SS (Replacement): 					
This project involves transformer installations to ensure the adequacy of transformer capacity to serve the loads. Furthermore, capacitor installations in Quezon and Taytay will be implemented to address power quality. Also, the Project involves the replacement and installation of PCB in areas such as Biñan, Dasmariñas, Naga, and Muntinlupa substations to ensure reliability and flexibility of operations on the concerned substations.	 Labo Labo LNV 305 (Replacement): 1x100 MVA, 230/69-13.8 kV Power Transformer; 1-69 kV PCB and associated equipment Daraga 230 kV SS (Replacement): 3- 230 kV PCB and associated equipment Taytay 230 kV SS: 3x100 MVAR, 230 kV Capacitor Banks, 4-230 kV PCB and associated equipment Quezon 230 kV SS: 1x100 MVAR, 230 kV Capacitor Banks, 1-230 kV PCB and associated equipment Biñan 230 kV SS: 5-230 kV PCB and associated equipment, 6-115 kV PCB and associated equipment 					


X


NY.

1

SUBSTATION							Cha
Project Name and Description	Project Driver and Status	Project Cor Substation Dasmariñas 115 kV SS: 11-115 kV PCB and associated equipment Naga 69 kV SS: 1-69 kV PCB and associated equipment Muntinlupa 115 kV SS, 10-115 kV PCB and associated equipment Daraga 230 kV SS: 3-230 kV PCB and associated equipment Bay 69 kV SS: 2-69 kV PCB and associated equipment	nponents Transmission Line	Project Cost (Million Pesos)	Location	ETC	Chapter 8
Navotas 230 kV Substation	 Load Growth and System Reliability and Security ERC- approved 	• Navotas 230 kV SS: 2x300 MVA, 230/115-13.8 kV Transformers, 9- 230 kV PCB (GIS) and associated equipment, and 15-115 kV PCB (GIS) and associated equipment	 From Marilao-Quezon cut-in point to Navotas SS: 230 kV, ST/SP-DC, 4-795 MCM ACSR/AS, 20 km 	6,167M	Navotas	Dec 2024	
The project aims to growth in Sector 1 of serves as a connectio plants in the area succ Millennium Power F further increase in l 230/115 kV subs MERALCO Sector 1 wi loaded and will lose th 1 contingency. This Metro Manila loads to risk as well as po were during system peak lo	of MERALCO and n point for power thas the TMO and Plants. With the oad, the existing stations serving ill become heavily ne provision for N- will expose the o supply reliability e quality concerns	MARILAO 20 km		QUEZON	DOÑA IMELDA		
The project involves th a new 230 kV drawdo the growing demand provide high level of as improvement of v to the underlying Substations. The pr 230 kV SS will initially through cut-in conn existing Marilao-Quez will ultimately termin Marilao 500 kV SS. Th Gas Insulated Switchy to the space constrain SS.	wn SS to address in Metro Manila, reliability as well oltage regulation 115 kV Meralco roposed Navotas r linked to the grid ection along the zon 230 kV TL and hate in the future re project will be a gear (GIS) SS due		NAVOT.	AS	PACO		
Porac 230 kV Substation The project aims to growth in Pampanga development of majo Alviera. This projec establish the 230 k ¹ from Hermosa in Bata in Tarlac. This will pri access to the generati	a specifically the or loads such as tt also aims to V backbone loop aan to Concepcion ovide more direct	 Porac 230 kV SS: 2x300 MVA 230/69 kV Transformers, 3x100 MVAR, 230 kV Shunt Capacitor, 13-230 kV PCB, 19-69 kV PCB and associated equipment. Hermosa 230 kV SS (Expansion): 2-230 kV PCB and associated equipment Clark 230 kV SS (Expansion): 2x100 MVAR, 230 kV SS (Expansion): 2x100 MVAR, 230 kV SS hunt Capacitor, 8-230 kV PCB and associated equipmentCapas 230 kV SS (Expansion), 4-230 kV PCB and associated equipment 	 Hermosa-Porac 230 kV TL: ST-DC, 4-95 MCM ACSR, 34 km. Capas-Porac SS: ST-DC 4-795 MCM ACSR, 30 km Clark 230 kV TL Extension: ST-DC, 4-795 MCM ACSR, 5 km. 	6,384M	Pampanga	Jun 2024	

Page | 68

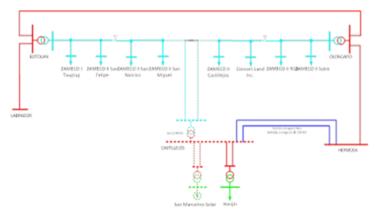
Castillejos 230 kV Load Growth Substation

Marilao-Quezon 230 kV TL. The project also involves the construction of 69 kV TL to supply various industrial loads.

- and System Reliability and Security • Filed to ERC
- The project aims to caters the load growth in Zambales and to provide N-1 contingency for Botolan-Castillejos and Olongapo-Cawagan 69 kV TL, as well as

for Botolan 50 MVA Transformer the Castilleios SS will have a transformer capacity of 2x100 MVA and will serve as an alternative source to loads of Botolan and Olongapo 230 kV substations.

The project will also serve as the connection point of San Marcelino Solar and other future bulk generation development in the area. The new SS will connect to the Hermosa 230 kV SS thru the Castillejos-Hermosa 500 kV TL (initially energized at 230 kV).

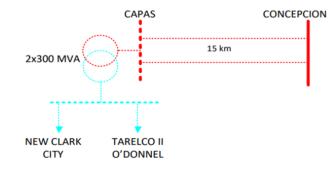

Capas 230 kV	٠	Load growth
Substation		and
		Generation

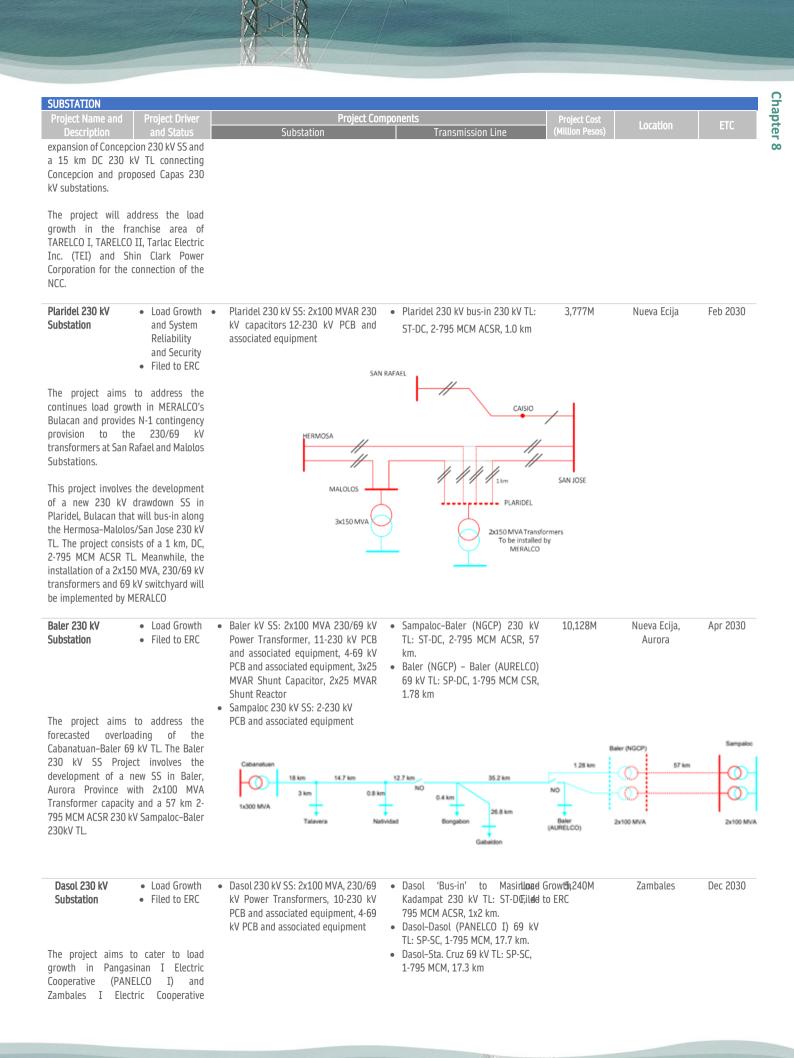
Entry • Filed to ERC

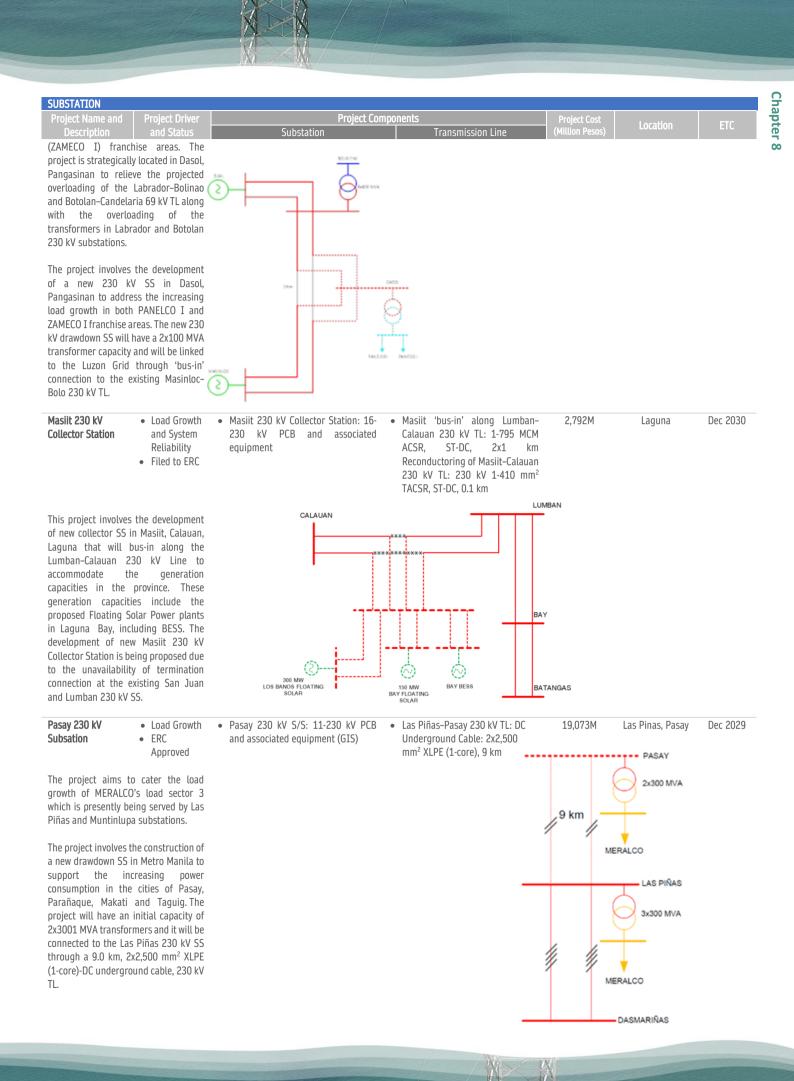
The project aims to address the overloading of 230/59 kV transformers in Concepcion SS. The project target is to accommodate the connection of New Clark City (NCC) and supply to loads of TARELCO I, and Tarlac Electric Cooperative II (TARELCO II),. This project involves the installation of 2x300 MVA 230/69 kV transformers,

- equipment.
- Hermosa-Castillejos 500 kV Line Extension: 4-410 mm² TACSR/AS, ST-DC, 6 km
- Hanjin 230 kV Line Extension: 1-795 MCM ACSR, ST-DC, 7 km Castillejos 69 kV Line Extension:
- 1-410 mm² TACSR/AS, SP/ST-DC, 3km.

• Concepcion 230 kV SS: 4-230 kV PCB • Concepcion-Capas 230 kV TL ST-DC, 6.954M Tarlac Dec 2029 4-795 MCM ACSR, 15 km


2,596M


Zambales


Dec 2025

• Capas 230 kV SS: 2x300 MVA 230/69-13.8 kV power transformers 3x100 MVAR 230 kV capacitors 11-230 kV PCB and associated equipment 14-69 kV PCB and associated equipment

and associated equipment.

 Sampaloc 201 W + Load Growth Sampaloc 201 W +		M				
Project Jame and Description Project Components <						
Description and Status Substation CrossReson Line Queue Control Substation - Filed to ERC - Sampalic 230 KV PCB and associated quipment, 5-60 KV PCB and associated quipment, 2-50 MVR - Sampalic 230 KV PCB and associated quipment, 2-50 MVR - Sampalic 230 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Sampalic 20 KV PCB and associated quipment, 2-50 MVR - Tak/A Cut-in to Tak/SA, 7 km The project involves the construction of a new 230 KV prodowom S5 in Nueve Cala mithic lacatify of 2-00 MVA, 2300 KV S5: 1-230 KV PCB and associated quipment varius incoming Generating Power Installed on VX S1: 2-20 KV S5: 2-230 KV PCB and associated quipment - Tak/A Cut-in to Tak/A CSR/AS, 5P-5C, 15 km The project aims to accommodal equipment Subtation substation - Cabanatuan 230 KV S5: 2-230 KV PCB and associated quipment - Tak/A Cut-in to Tak/A CSR/AS, 5P-5C, 15 km - Tak/A Cut-in to Tak/A CSR/AS, 5P-5C, 15 km The project aims to accommodal equipment Substation Nor	SUBSTATION					
Description Field 54dts Sampalor 220V • End of CMA Substation • Sampalor 230 W / EG and associated equipment, 549 W / PEB and associated equipment, 540 W/AR Sampalor 230 W / TL: 57-0C, 1-336 W(M / SR/AS, 7 km The project alins to address the forecastel ladg provide works in the said area. Sampalor 230 W / TL: 57-0C, 1-336 W(M / TL: 57-0C, 1-336		Project Com	ponents	Project Cost	Location	ETC
 Substation Filed to ERC Substation Substation System Generating Program Generating Program Generating Program Generating Program Cabanatuan-Pantapangan 230 kV 55: 4-230 kV PCB and associated equipment Substation System Substation System Substation System Substation System Cabanatuan-Saluata 230 kV 55: 4-230 kV PCB and associated equipment Cabanatuan 230 kV 55: 2-230 kV compact Arin Substation System Pantabangan 230 kV 55: 2-230 kV PCB and associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Pantabangan 230 kV 55: 7-230 kV Gand associated equipment Panta						
The project ains to address the forecasted load growth in Nueva Ecja. The project also ains to relieve the heavy loading of the existing 69 kV line from Cabanatuan going to Fatima (Pantabangan Load End) and addressed the voltage issues in the said area. The project involves the construction of a new 230 kV drawdown S5 in Nueva Ecja which will be connected to the Luzon ford through a 'busin' along the Nagasag-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Line 30 kV S2: 4230 kV Capata 230 kV S2: 4230 kV Capata 44. Through a 'busin' along the Nagasag-Pantabangan 230 kV Line 30 kV S2: 4230 kV Capata 44. Through a 'busin' along the Nagasag-Pantabangan 230 kV Line 30 kV S2: 4230 kV Capata 44. Through a 'busin' along the Nagasag-Pantabangan 230 kV Line 30 kV S2: 4230 kV Capata 44. Through a 'busin' along the Nagasag-Pantabangan 230 kV Line 30 kV S2: 4230 kV Capata 44. Through a 'busin' along the Nagasag-Pantabangan 230 kV Line 30 kV S2: 4230 kV Capata 44. Through a 'busin' along the Nagasag-Pantabangan 230 kV S5: 4230 kV Capata 44. Through a 'busin' along at 230 kV S5: 4230 kV Capata 44. Through a 'busin' along at 230 kV S5: 4230 kV Capata 44. Through a 'busin' along at 230 kV S5: 2430 kV Capata 44. Through a 'busin' along at 230 kV S5: 2430 kV Capata 44. Through a 'busin' along at 230 kV S5: 2430 kV Capata 44. Through a 'busin' along at 230 kV S5: 2430 kV Capata 44. Through a 'busin' along at 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and associated equipment 45. Doha Imetia 230 kV S5: 7230 kV CB and asso		230/69 kV Power Transformers, 12- 230 kV PCB and associated equipment, 5-69 kV PCB and associated equipment, 2x50 MVAR	 Pantabangan and Nagsaag- Pantabangan 230 kV TL: 1-795 MCM ACSR/AS, 2 km Sampaloc 'cut-in' to Cabanatuan- Fatima 69 kV TL: ST-DC, 1-336 	3,777M	Nueva Ecija	Dec 2028
 heavy loading of the existing 68 kV line from Cabanatuan going to Fatima addressed the voltage issues in the said area. me z30 kV drawdown SS in Nueva Ecija which will be construction of a new 230 kV drawdown SS in Nueva Ecija which will be construction of and the Cabanatuan-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV SS: 4-230 kV PCB and associated equipment Cabanatuan 230 kV SS: 4-230 kV PCB and associated equipment Cabanatuan 230 kV SS: 2-230 kV PCB and associated equipment Pantabangan 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230 kV SS: 7-230 kV PCB and associated equipment Data Imedia 230	forecasted load growth in Nueva Ecija.		• Sampaloc-SAJELCO 69 kV TL: SP-			
 calculation in the said area. The project involves the construction of a new 230 kV drawdown SS in Nueva Edja which will be connected to the fuzzon Grid through a 'bus-in' along the Nagsaag-Pantabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Capacitors. Furthermore, a new 69 kV TL going to San Jose City will be developed using 1-410 mm⁻¹ TACSRAS. cabanatuan 230 kV SS: 4-230 kV Compact in the statistic dequipment entry and Substation System of the Izzon Grid Associated equipment. cabanatuan 230 kV SS: 4-230 kV Compact in FactsRAS. cabanatuan 230 kV SS: 4-230 kV Compact in the sisting Under reliability and security and sasociated equipment. cabanatuan 230 kV SS: 7-230 kV Compact in the Izzon Grid Associated equipment. Pantabangan 230 kV SS: 7-230 kV CB and associated equipment. Pantabangan 230 kV SS: 7-230 kV CB and associated equipment. Pantabangan 230 kV SS: 7-230 kV CB and associated equipment. Doña Imedia 230 kV SS: 7-230 kV CB and associated equipment. Doña Imedia 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointa Imedia 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan 230 kV SS: 7-230 kV CB and associated equipment. Pointabangan	heavy loading of the existing 69 kV line from Cabanatuan going to Fatima			Nagsaag		
The project involves the construction of a new 230 kV drawdown SS in Nueva Ecjia which will be connected to the hagsaag-Pantabangan 230 kV Line. The proposed SS will have an initial capacity of 2x100 MVA, 230/r69 kV Power Transformers with 2x50 MVA 230/kG Power Transformers with 2x50 MVA 230 kV Jue to the proposed SS will have an initial capacity of 2x100 MVA, 230/r69 kV Power Transformers with 2x50 MVA 230 kV SS: 4-230 kV CPCB and associated equipment entry and Substation System reliability and security and security and suscitated Switchgear (CAIS) PCB and associated equipment the project replace the existing Undersonal Substation Luzon Grid. Additionally, this project replace the existing Undersonal Substation Luzon Grid. Additionally, this project replace the existing Undersonal Substation Luzon Grid. Additionally, this project replace the existing Undersonal Substation Luzon Grid. Additionally, this project replace the existing Undersonal Substation Luzon Grid. Additionally, this project replace the existing Undersonal Substation Upgrading reliability and securities and associated equipment the Luzon Grid. These include the existing Undersonal Substation Upgrading the adaption of new, and/or compared the form of the curve form of the existing Undersonal Substation Substation Upgrading the existing Undersonal Substation Upgrading the existing Undersonal Substation Upgrading the existing Undersonal Substation Upgrading the form of new, and/or compared the form of the curve form of the tuzon Grid. These include the tuzon Grid. These include the tax on the Luzon Grid.	addressed the voltage issues in the		Pantabangan Load-E			
Luzon Primary Partabangan 230 kV Line and the Cabanatuan-Pantabangan 230 kV Line. The proposed SS will have an initial capacity of 2x100 MVA, 230/69 kV Power Transformers with 2x50 MVA 230 kV capacitors. Furthermore, a new 69 kV T Lgoing to San Jase City will be developed using 1-410 mm ² TACSR/AS. • Cabanatuan 230 kV SS: 4-230 kV PCB and associated equipment * Cabanatuan 230 kV SS: 4-230 kV CDB and associated equipment * Pantabangan 230 kV SS: 2-230 kV PCB and associated equipment * Pantabangan 230 kV SS: 2-230 kV PCB and associated equipment * Pantabangan 230 kV SS: 7-230 kV Gas Insulated Substation (GIS) PCB substation * Pantabangan 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Subtation (GIS) PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated equipment * Salong 230 kV SS: 7-230 kV PCB and associated eq	a new 230 kV drawdown SS in Nueva		Masiway	H	Sampaloc	
kV Line. The proposed SS will have an initial capacity of 24100 MVA, 230/69 kV Power Transformers with 2x50 MVA kV Power Transformers with 2x50 MVA 230 kV S20 Arganitors. Furthermore, a new 69 kV TL going to San Jose City will be developed using 1-410 mm² TACSR/AS. Cabanatuan 230 kV SS: 4-230 kV PCB and associated equipment Magat 230 kV SS: 1-230 kV Compact Ari Insulated Switchgear (CAIS) PCB and associated equipment Magat 230 kV SS: 2-230 kV PCB and associated equipment Pantabangan 230 kV SS: 7-230 kV PCB and associated equipment Defa Inelda 230 kV SS: 7-230 kV PCB and associated equipment Dofa Inelda 230 kV SS: 7-230 kV PCB and associated equipment Dofa Inelda 230 kV SS: 7-230 kV PCB and associated equipment Dofa Inelda 230 kV SS: 7-230 kV PCB and associated equipment Malaya Collector Station: 4-230 kV PCB and associated equipment Malaya Collector Station: 4-230 kV PCB and associated equipment Malaya Collector Station: 4-230 kV PCB and associated equipment Malaya Collector Station: 4-230 kV PCB and associated equipment Salong 230 kV SS: 7-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment Sa	Luzon Grid through a 'bus-in' along the Nagsaag–Pantabangan 230 kV Line			93X	1 km	
 230 kV capacitors. Furthermore, a new 69 kV TL going to San Jose City will be developed using 1-410 mm² TACSR/AS. Luzon Primary Generation entry and ssociated equipment Cabanatuan 230 kV SS: 4-230 kV PCB and associated equipment Magat 230 kV SS: 1-230 kV Compact Arir Insulated Switchgaar (CAIS) PCB and associated equipment Pantabangan 230 kV SS: 2-230 kV PCB and associated equipment Pantabangan 230 kV SS: 7-230 kV PCB and associated equipment Doña Imelda 230 kV SS: 7-230 kV PCB and associated equipment Doña Isulated Switstation (GIS) PCB and associated equipment Doña Isulated Switstation (GIS) PCB and associated equipment Substations. Luzon Primary Equipment Substation Upgrading Project (LPESUP) aims to upgrade the existing HVE at various substations in the Luzon Grid. These include the installation of new, and/or 	kV Line. The proposed SS will have an initial capacity of 2x100 MVA, 230/69					panatuan
Luzon Primary • Generation • Cabanatuan 230 kV SS: 4-230 kV PCB • Tiwi-A 'Cut-in' to Tiwi-C-Tabaco 69 15,285M Various Nor Equipment System and associated equipment • Magat 230 kV SS: 1-230 kV Compact • Tiwi-A 'Cut-in' to Tiwi-C-Tabaco 69 15,285M Various Nor Substation System reliability and associated equipment • Magat 230 kV SS: 1-230 kV Compact • Herrosa-BPPL/Calaguiman 69 kV TL: 69 kV, 1-795 MCM ACSR/AS, SP-SC, 1.5 km • Herrosa-BPPL/Calaguiman 69 kV The project aims to accommodate various incoming Generating Power • Pantabangan 230 kV SS: 7-230 kV • PCB and associated equipment • Uazon 230 kV SS: 7-230 kV • Sesociated equipment • Uazon 230 kV SS: 7-230 kV • Sesociated equipment Substations. Luzon Primary • Doña Imelda 230 kV SS: 7-230 kV • Ga associated equipment • Doña Imelda 230 kV SS: 7-230 kV • Ga associated equipment • Malaya Collector Station: 4-230 kV • Ga associated equipment • Malaya Collector Station: 4-230 kV • Malaya Collector Station: 4-230 kV • Cab associated equipment • Malaya Collector Station: 4-230 kV • Cab associated equipment • Salong 230 kV SS: 2-230 kV PCB and associated equipment • Salong 230 kV SS: 2-230 kV PCB and associated equipment • Doña associated equipment • Doña associated equipment <	230 kV capacitors. Furthermore, a new 69 kV TL going to San Jose City will be		Sajelco			
 Replacement of Transformers and PCB San Rafael 230 kV SS: 1X300 MVA, 230/69 kV Power Transformer 2-69 kV PCB and associated equipment Tuguegarao 69 kV SS: 2-69 kV PCB and associated equipment Daraga 69 kV SS: 2-69 kV PCB and associated equipment Bay 69 kV SS: 3-69 kV PCB and associated equipment Clark 69 kV SS: 3-69 kV PCB and associated equipment Clark 69 kV SS: 1-69 kV PCB and associated equipment Bacnotan 69 kV SS: 1-69 kV PCB and 	EquipmententryandSubstationSystemUpgradingreliabilityand securityThe project aims to accommodatevarious incoming Generating PowerPlants on the Luzon Grid. Additionally,this project replace the existing Under-rated PCB and Power Transformersinstalled on various LuzonSubstations.Luzon PrimaryEquipment Substation UpgradingProject (LPESUP) aims to upgrade theexisting HVE at various substations inthe Luzon Grid. These include theinstallation of new, and/orReplacement of Transformers and PCBto a higher rating to accommodate theprojected demand of the Luzon Grid to	 and associated equipment Magat 230 kV SS: 1-230 kV Compact Air Insulated Switchgear (CAIS) PCB and associated equipment Pantabangan 230 kV SS: 2-230 kV PCB and associated equipment Quezon 230 kV SS: 7-230 kV PCB and associated equipment Doña Imelda 230 kV SS: 7-230 kV Gas Insulated Substation (GIS) PCB and associated equipment 12-115 kV GIS PCB and associated equipment Malaya Collector Station: 4-230 kV PCB and associated equipment Salong 230 kV SS: 2-230 kV PCB and associated equipment San Rafael 230 kV SS: 1x300 MVA, 230/69 kV Power Transformer 2-69 kV PCB and associated equipment Tuguegarao 69 kV SS: 2-69 kV PCB and associated equipment Daraga 69 kV SS: 2-69 kV PCB and associated equipment Bay 69 kV SS: 3-69 kV PCB and associated equipment Clark 69 kV SS: 3-69 kV PCB and associated equipment 	 kV TL: 69 kV, 1-795 MCM ACSR/AS, SP-DC, 2x1 km Hermosa-BPPI/Calaguiman 69 kV TL: 69 kV, 1-795 MCM ACSR/AS, 	TYCON	Provinces in	Nov 2026

X

X

						0
SUBSTATION Project Name and Project Driver	Project Con	nnonents	Project Cost			hap
Description and Status	 Substation Bolo 230 kV SS: 4-230 kV PCB and associated equipment Laoag 230 kV SS: 2x300 MVA, 230/115 kV POwer Transformer 4-230 kV PCB and associated equipment 1-115 kV PCB and associated equipment 3-69 kV PCB and associated equipment Hermosa 69 kV SS: 1x300 MVA, 230/69 kV PCB and associated equipment Tiwi-C 69 kV SS: 2-69 kV PCB and associated equipment Limay 69 kV SS: 1-69 kV PCB and associated equipment Tiwi-A SS: 1x100 MVA, 230/69 kV POwer Transformer 3-69 kV PCB and associated equipment Calamba 230 kV SS: 2-230 kV PCB and associated equipment 	Transmission Line	(Million Pesos)	Location	ETC	Chapter 8
Tanauan 230 kV Substation• Load growth • Filed to ERCThe project aims to cater the load growth and improve the power quality 	associated equipment	Calamba-Tanauan 230 kV TL: T/SP-DC, 2-795 MCM ACSR, 12 km		4	Jan 2028	
Kawit 230 kV SubstationLoad Growth and System Reliability 	kV PCB and associated equipmentRosario 115 kV SS Upgrading: 2x100	 Silang-Kawit-Las Piñas 230 kV TL: SP-DC, 4-795 MCM ACSR, 38 km Kawit-Rosario 115 kV TL SP/ST- SC, 2-795 MCM ACSR, 9 km 	15,152M	Cavite, Las Piñas	May 2028	

X

1

Project Name and DescriptionProject Driver and StatusProject ComponentsProject Cost (Million Pesos)LocationETCGIS substation and a well as addressing the overloading of Rosario 115/34.5 kV transformers during N-1 contingency.Transformers, 8-115 kV PCB (GIS) and associated equipment, 10-34.5 kV PCB (GIS) and associated equipment.Transmission LineLocationETCThe project involves the development of a new drawdown SS in Kawit, Cavite with a 2x300 MVA transformer capacity to cater the load growth in the Cavite Sector of MERALCO. The project will relive the overloading of Dasmariñas 3x300 MVA 230/115 kV transformers. The project involves the construction of 38 km DC 230 kV Line from Las Piñas to Kawit and to Silang, as well as the upgrading of the Rosario 115 kV SS toProject Components SubstationProject Cost MILD Project Cost (MILLION Pesos)LocationETC	SUBSTATION					
Descriptionand StatusSubstationTransfirision Line(Multiplesus)GIS substation and a well as addressing the overloading of Rosario 115/34.5 kV transformers during N-1 contingency.Transformers, 8-115 kV PCB (GIS) and associated equipment, 10-34.5 kV PCB (GIS) and associated equipment.Transformers, 8-115 kV PCB (GIS) and associated equipment, 10-34.5 kV PCB (GIS) and associated equipment.The project involves the development of a new drawdown SS in Kawit, Cavite with a 2x300 MVA transformer capacity to cater the load growth in the Cavite Sector of MERALCO. The project will relieve the overloading of Dasmariñas 3x300 MVA 230/115 kV transformers. The project involves the construction of 38 km DC 230 kV Line from Las Piñas to Kawit and to Silang, as well as theKultiput the status construction of status and to Silang, as well as the	Project Name and Project Driv	er Project Comp	onents	Project Cost	Location	FTC
addressing the overloading of Rosario 115/34.5 kV transformers during N-1 contingency. The project involves the development of a new drawdown SS in Kawit, Cavite with a 2x300 MVA transformer capacity to cater the load growth in the Cavite Sector of MERALCO. The project will relieve the overloading of Dasmariñas 3x300 MVA 230/115 kV transformers. The project involves the construction of 38 km DC 230 kV Line from Las Piñas to Kawit and to Silang, as well as the	Description and Statu	Substation	Transmission Line	(Million Pesos)	Location	LIC
double-bus GIS SS.	addressing the overloading of Rost 115/34.5 kV transformers during contingency. The project involves the developm of a new drawdown SS in Kawit, Ca with a 2x300 MVA transformer capa to cater the load growth in the Ca Sector of MERALCO. The project relieve the overloading of Dasmari 3x300 MVA 230/115 kV transform The project involves the construction 38 km DC 230 kV Line from Las Pi to Kawit and to Silang, as well as upgrading of the Rosario 115 kV SS	rio and associated equipment, 10-34.5 kV PCB (GIS) and associated equipment. ent ite ite vill ias irs. of ias the	KAWIT 9 km MERALCO SUBSTATION			

- North Luzon 230 kV Substation Upgrading 2
- Load Growth and System Reliability and Security
 Filed to ERC

The North Luzon Substation Upgrading Project 2 aims to cater the load growth and provide N-1 contingency to Substations in NGCP's North Luzon Region. Without the project, power interruptions will be experienced by customers during failure of existing transformers and PCB The project includes capacity additions to the substations, replacement and rearrangements of PCB to ensure reliability and flexibility of operations

on the various substations.

- Laoag SS: 1x100 MVA 115/69 kV Power Transformer and Accessories, 1-115 kV PCB and associated euipment, 10-69 kV PCB and associated equipment
- Mexico SS: 18-69 kV PCB and associated equipment
- San Manuel SS: 2x300 MVA, 230/69 kV Power Transformer and Accessories, 14-69 kV PCB and associated equipment Nagsaag SS: 1-69 kV PCB and Associated equipment
- Pantabangan SS: 4-230 kV PCB and associated equipment
- Tuguegarao SS: 1x100 MVA 230/69 kV Power Transformer and Accessories, 1-230 kV PCB and associated equipment, 1-69 kV PCB and Associated equipment
- Balingueo SS: 1x100 MVA 230/69 kV Power Transformer and Accessories, 2-230 kV PCB and associated equipment, 1-69 kV PCB and associated equipment
- Bauang SS: 1x100 MVA 230/69 kV Power Transformer and Accessories
- Bayombong SS: 2x100 MVA, 230/69 kV Power Transformer and Accessories, 5-230 kV PCB and associated equipment, 14-69 kV PCB and associated equipment
- Concepcion S/S: 6-69 kV PCB and associated equipment, 2x300 MVA 230/69 kV Power Transformer and Accessories
- Santiago SS: 1x100 MVA, 230/69 kV Power Transformer and Accessories, 5-69 kV PCB and associated equipment
- Subic SS: 1-230 kV PCB and associated equipment
- San Jose SS: 29-230 kV PCB and associated equipment, 12-115 kV PCB and associated equipment

9,152M

La Union, Ilocos Phase 1 -Norte, Nueva Jul 2024 Vizcaya, Isabela, Ilocos Sur, Phsae 2 -Pangasinan, May 2027 Cagayan, Tarlac, Pampanga, Zambales, Nueva Ecija, Bataan

UBSTATION Project Name and	Project Driver	Project Con	nponents	Project Cost	Location	ETC
Description	and Status	Substation Substation San Esteban SS: 2x100 MVA 115/69 kV Power Transformer and Accessories, 1-69 kV PCB and associated equipment, 1-115 kV PCB and associated equipment Masinloc SS: 2-230 kV PCB and associated equipment Bolo SS: 2-230 kV PCB and associated equipment Hermosa SS: 19-230 kV PCB and associated equipment.	Transmission Line	(Million Pesos)		
lagalang 230 kV ubstation The project aims		 Magalang SS: 2x300 MVA 230/69 kV Power Transformer, 12-230 kV PCB and associated equipment, 10-69 kV PCB and associated equipment, 2x100 MVAR, 230 kV Shunt Capacitor 	 Magalang 'bus-in' along Mexico- Concepcion 230 kV TL: 230 kV, 2- 410 mm² TACSR, ST-DC, 3 km 	3,516M	Pampanga	Dec 2021

province of Pampanga. This will improve the reliability of the supply of loads in Pampanga to act as another connection point of DU in the area. To accommodate the connection of 96.236 MWac Sapang Balen 1 Solar Power Plant Project and 463.995 MWac Sapang Balen 2 Solar Power Plant Project of Sapang Balen Solar Sustainable Energy Corporation (SBSSEC). Additionally, the project addresses the anticipated load growth of AEC, PELCO I, and PELCO II.

The project involves the development of a new 230 kV SS to accommodate the connection of proposed solar plants in Pampanga. Additionally, a 2x300 MVA, 230/69 kV transformer capacity will be installed to address the anticipated demands in the area. This SS will 'bus-in' along the existing Mexico-Concepcion 230 kV Line.

115 kV PROJECTS

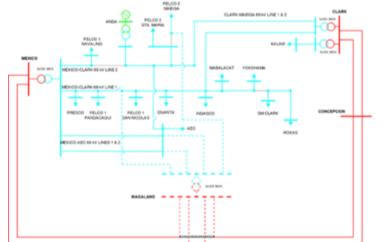
- Minuyan 115 kV Switching Station
- System Reliability • Filed to ERC

The project aims to provide reliable connection of the industrial loads (cement plants) in the area of Bulacan. The SWS aims to provide flexibility and enables to isolate the fault to prevent power interruption to the other connected customers. This project involves the construction of a new SWS that will bus-in along the San Jose-Angat 115 kV Line.

- Minuyan SWS: 11-115 kV PCB and associated equipment
- Las Piñas 230 kV SS (Expansion): 4-230 kV PCB and associated equipment.
- San Jose 115 kV Line Extension: ST-DC, 2-795 MCM ACSR/AS, 0.5
 - km
- 1,895M
- Feb 2030 Bulacan

San Jose

н


TRANS ASIA

HOLCIM

Angat 115 kV Line Extension: ST-MINUYAN DC, 2-795 MCM ACSR/AS, 1 km RCC NORZAGARAY / // н Angat HEP For Retirement

RCC BULACAN

Page | 76

.

VOLTAGE IMPROVEMENT	Desiget Components	Project Cost	Location	ГТС
Project Name and Project Driver Description and Status	Project Components Substation Transmission Line	(Million Pesos)	Location	ETC
230 KV PROJECTS Luzon Voltage Improvement Project 3 The project addresses the anticipate undervoltage problem during peak loa condition and overvoltage problem during off peak load condition at various 500 kf 230 kV and 69 kV LES in the North Luzo Grid. The Luzon Voltage Improvement Project 3 involves the installation of capacitors and reactors to substations the North Luzon Region, Bale Pantabangan, Umingan, Camiling, Sa Esteban, Botolan, Itogon, Antipolo and Bautista substations.	 kV Capacitor, 3-69 kV PCB and associated equipment Mexico SS: 3x100 MVAR, 230 kV Shunt Capacitor, 1-230 kV PCB and associated equipment San Jose SS: 1x100 MVAR, 230 kV Shunt Capacitor, 1-230 kV PCB and associated equipment Cabanatuan SS: 2x50 MVAR, 230 kV Capacitor Bank, 1-230 kV PCB and associated equipment Laoag SS: 2x25 MVAR, 230 kV Capacitor Bank, 1x25 MVAR, 230 kV Shunt Reactor, 1x35 MVAR, 230 kV Shunt Reactor, 1x36 MVAR, 230 kV Shunt Reactor, 1x36 MVAR, 230 kV Shunt Reactor, 1x50 kV PCB and associated equipment Nagsaag SS: 1x90 MVAR, 500 kV Shunt Reactor, 1-500 kV PCB and associated equipment Tuguegarao SS: 1x25 MVAR, 230 kV Chand associated equipment, 1-69 kV PCB and associated equipment Tuguegarao SS: 1x25 MVAR, 230 kV Shunt Reactor Bantay SS: 1x7.5 MVAR, 115 kV Capacitor Bank, 2-230 kV PCB and associated equipment San Esteban 230 kV SS: 2x25 MVAR, 230 kV Shunt Reactor, 6-230 kV PCB and associated equipment Botolan 230 kV SS: 1x25 MVAR 230 kV PCB and associated equipment Botolan 230 kV SS: 1x25 MVAR 230 kV PCB and associated equipment Botolan 230 kV SS: 1x25 MVAR 230 kV PCB and associated equipment Botolan 230 kV SS: 1x25 MVAR 230 kV PCB and associated equipment Botolan 230 kV SS: 1x25 MVAR 230 kV PCB and associated equipment Botolan 230 kV SS: 1x25 MVAR 230 kV Capacitor, 2-230 kV PCB and associated equipment Itogon 69 kV PCB and associated equipment Antipolo 230 kV SS: 2x100 MVAR, 230 kV Capacitor, 2-230 kV PCB and associated equipment Itogon 69 kV PCB and associated equipment Antipolo 230 kV SS: 2x100 MVAR, 230 kV Capacitor, 2-230 kV PCB and associated equipment Bayamban SS: 3x5 MVAR, 69 kV Capacitor Bank, 4-69 kV PCB and associated equipment 	2,566M	Aurora, Nueva Ecija, Pangasinan, Tarlac, Ilocos Sur, Zambales, Benguet	Apr 2024
Luzon Voltage Improvement Project 4Power Quality and Technology ERC Approved	 Dasmariñas SS: 2x100 MVAR, 230 kV Capacitor Bank, 2-230 kV PCB and associated equipment Biñan SS: 2x100 MVAR, 230 kV Capacitor Bank, 2-230 kV PCB and associated equipment 	1,102M	Sorsogon, Camarines Sur, Batangas, Albay, Cavite	Phase 1 -Apr 2024

VOLTAGE IMPROVEMENT	Draigst Component	s Project Cost	Location	ГТС
Project Name and Description Project Driver and Status The project aims to address the anticipated undervoltage problem during peak load condition at various 69 kV LES in the South Luzon Grid. This project involves the installation of capacitor banks to various substations in the South Luzon Region.	Bank, 3-69 kV PCB and associated equipment	Transmission Line (Million Pesos)	Location	ETC Phase 2 - Dec 2026
Luzon Voltage Improvement Project 5 The project aims to address the anticipated undervoltage problem during peak load condition at various LES in Cagayan, Tarlac, Nueva Ecija, Pampanga, Zambales, Pangasinan, Batangas, Quirino, Isabela, Nueva Viscaya, and Benguet. The project intends to provide additional reactive power support in the network to maintain the system voltage within ±5% of the nominal value during normal and single outage contingencies as prescribed under the PGC. LVIP 5 involves the installation of capacitors to various 69 kV load end substations in the North Luzon Region.	 Capacitor Bank, 5-69 kV PCB and Associated equipment Bani LES: 4x5 MVAR 69 kV Capacitor Bank, 5-69 kV PCB and Associated equipment San Fabian LES: 4x5 MVAR 69 kV Capacitor Bank, 5-69 kV PCB and associated equipment. Aglipay LES: 4x5 MVAR 69 kV Capacitor Bank, 5-69 kV PCB and Associated equipment 	5,554M	Cagayan, Nueva Ecija, Zambales, Pangasinan, Quirino, Isabela	Dec 2030
Luzon Voltage • Power Quality Improvement • Filed to ERC Project 6 • Filed to ERC The project addresses the anticipated undervoltage problem during peak load condition at various 69 kV LES in the north and South Luzon Grid. The project intends to provide additional reactive power support in the network to maintain the system voltage within ±5% of the nominal value during normal and single outage contingencies as prescribed under the PGC. LVIP 6 involves the installation of capacitors to substations in the North and South Luzon Region.	Shunt Capacitor, 2-230 kV PCB and associated equipment	1,620M	Pangasinan, Cagayan, Tarlac, Zambales, Bulacan, Laguna, Camarines Sur	Mar 2029

N/S

N

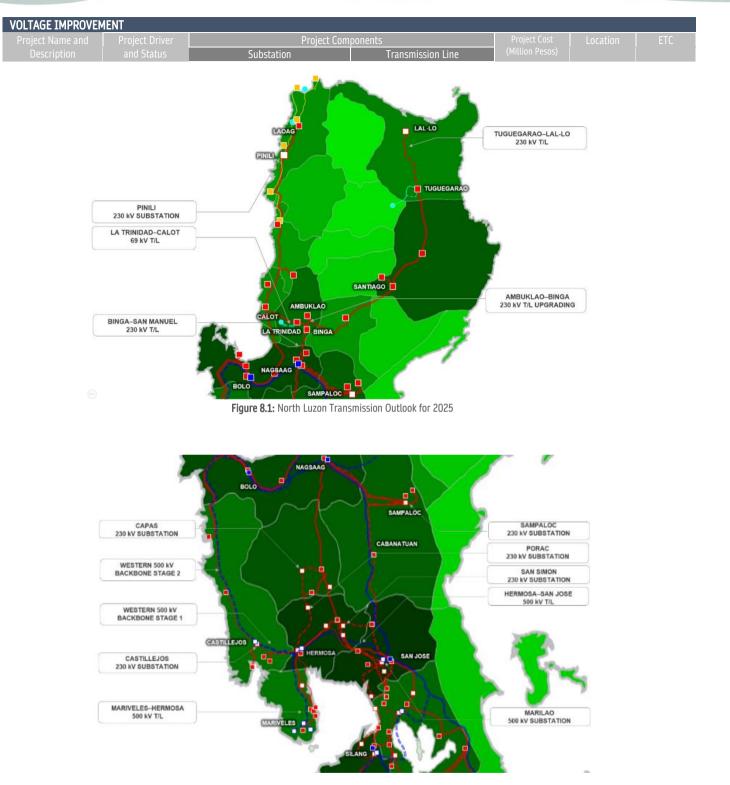


Figure 8.2: Central Luzon Transmission Outlook for 2025

Figure 8.3: Metro Manila Transmission Outlook for 2025

Figure 8.4: South Luzon Transmission Outlook for 2025

Figure 88.5: Bicol Region Transmission Outlook for 2025

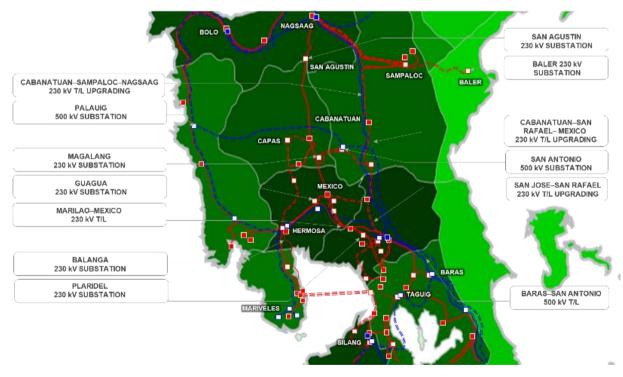


Figure 8.6: Central Luzon Transmission Outlook for 2030

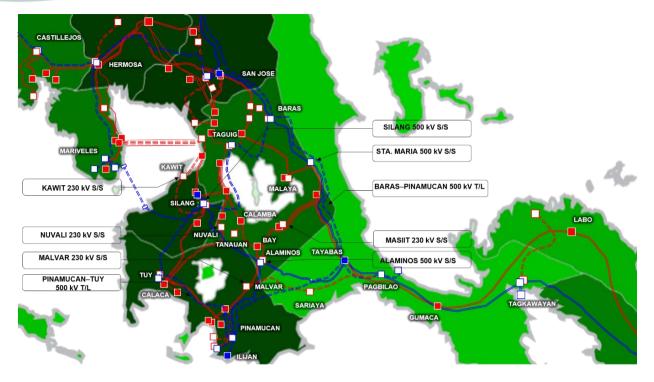


Figure 8.7: Metro Manila Transmission Outlook for 2030

Figure 8.8: South Luzon Transmission Outlook for 2030

Figure 8.9: Bicol Region Transmission Outlook for 2030

8.2 Transmission Outlook for 2031-2040

Projects filed from 2031 to 2040 focus on the generation capacities in Northern Luzon that will be accommodated by the implementation of the Northern Luzon 230 kV Loop to provide the needed transmission capacity augmentation.

The proposed hydro and wind farms in the Mountain Province will be connected to the grid through the La Trinidad–Sagada 230 kV TL Project. In addition, Ilocos Norte being within one of the CREZ in Northern Luzon, any additional generation will be accommodated by both Bolo–Balaoan 500 kV TL and the Balaoan–Laoag 500 kV TL Projects.

Another bulk generation location for Renewable Energy and Coal Plants is the province of Zambales. These generation capacities will be accommodated by the Palauig 500 kV SS and the development of new 500 kV transmission corridor from Palauig to San Antonio in Nueva Ecija and eventually to Baras, Rizal.

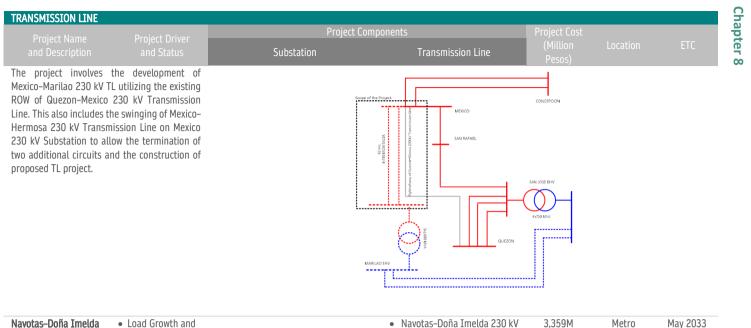
TRANSMISSION LINE						
Project Name	Project Driver	Project Comp	onents	Project Cost		
and Description		Substation	Transmission Line	(Million Pesos)	Location	
500 kV PROJECTS						
Taguig-Silang 500 kV Transmssion Line The project addresses t Jose-Tayabas 500 kV	TL and provides new	Silang 500 kV SS: 4-500 kV PCB and associated equipmen	• Taguig-Silang 500 kV TL: ST- DC, 4-410 mm ² TACSR, 72 km	13,689M	Cavite, Metro Manila	Feb 2031
transmission corridor the Metro Manila It involves the developr transmission corridor th power supply in Metro N	nent of a new 500 kV nat will strengthen the Manila. The 500 kV ST-					
DC, 4-410mm2 TACSR, Taguig and Silang 50 increase and strengther supplying Metro Manila	0 kV Substations to					

Table 8.2 List of Luzon transmission projects for the period 2031-2040

TRANSMISSION LINE	Project Comp	oonents	Project Cost		
Project Name Project Drive and Description and Status		Transmission Line	(Million Pesos)	Location	
Nagsaag-Santiago 500 • Generation Er kV Transmssion Line • Filed to ERC The project aims to cater the incoming hy geothermal, and solar power plant genera capacities in the Provinces of Ifugao, Kali	500/230 kV power transformers, 2x60 MVAR 500 kV line reactors, 2x90 MVAR 500 kV shunt reactors, 2x100 MVAR 230 kV capacitors, 10- 500 kV PCB and associated equipment, 22-230 kV PCB and associated equipment dro, Nagsaag 500 kV SS: 4-500 kV PCB and associated equipment	 Nagsaag-Santiago 500 kV TL: ST-DC, 4-410 mm² TACSR, 140 km New Santiago SS 230 kV tie- line: ST-DC, 4-795 MCM ACSR, 1km 	30,956M	Isabela, Pangasinan	Oct 2031
and Apayao and to address the overloadir	g of PCB and associated equipment	SANTIAGO BAYAOMBONG	AMBUKLAO	BINGA	
Santiago-Bayombong-Ambuklao 230 kV TL It involves the development of a Santiago			/		
It involves the development of a Santiago 500 kV SS with 2x1,000 MVA 500/230 kV Transformer capacity and a 140 km, ST-DC, 4 410 mm2 TACSR/AS 500 kV TL from Nagsaag to Santiago 500 kV SS.	kV C, 4- 2x1000 MVA g to	140 km			9 // SAN
	NEX	W SANTIAGO		2x600 MV/	
Bolo-Balaoan 500 kV • Generation Er • Filed to ERC	 Balaoan 500 kV SS: 2x750 MVA 500/230 kV Power Transformers, 20-500 kV PCB and associated equipment, 21-230 kV PCB and associated equipment, 4x90 MVAR, 500 kV Shunt Reactor, 2x60 MVAR, 500 kV Line Reactor, 3x100 MVAR, 230 kV Capacitor Bolo 500 kV SS: 3-500 kV PCB and associated equipment 	 Bolo-Balaoan 500 kV TL: ST-DC, 4-410 mm² TACSR/AS, 89 km Balingueo-Balaoan 500 kV TL: ST-DC, 4-410 mm² TACSR/AS, 41 km Bacnotan-Balaoan 230 kV TL: ST-DC, 4-795 MCM, ACSR, 11 km Balaoan-Bakun 230 kV TL: ST-DC, 1-795 MCM, ACSR, 13.7 km Balaoan Bus-in Bauang-San Esteban 230 kV TL: ST-DC, 1-795 MCM, ACSR, 2x0.6 km 	33,903M	La Union, Pangsinan	Apr 2032
The project aims to accommodate the ent the proposed 1,200 MW Luna CFPP in La U and the 500 MW COHECO Badeo Pum Storage HEPP in Benguet. It also aim address the forecasted load growth in Il Region.	nion ped- s to	Leceg Sen Esteben B	Santiago		
It involves the development of a new 500 transmission corridor in Northwestern pa the Luzon Grid and a new 500/230 kV colle SS in Balaoan, La Union.	t of Bacnota		imbukiso		
	Balauan B	Beueng Belingueo La Trinidad Bolo	Nogroag		
Balaoan-Laoag 500 kV• Generation ErTransmssion Line• Filed to ERC	try • Laoag EHV SS: 2x1,000 MVA, 500/230 kV Power Transformer, 3x90 MVAR 500 kV Shunt Reactor,	 Balaoan-Laoag 500 kV TL: ST-DC, 4-410 mm² TACSR, 175 km 	40,195M	La Union, Ilocos Norte	Apr 203

X

UX.

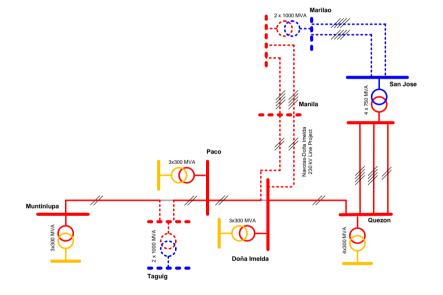

RANSMISSION LINE Project Name	Project Driver	Project Comp	onents	Project Cost		
and Description	Project Driver and Status	Substation	Transmission Line		Location	
he project aims to accomn vind farm and Solar PV proj f Ilocos Norte. The ransmission facilities in the onstraints to accommoda venewable Energy (RE) plan	ects in the Province existing 230kV grid have capacity te these incoming	 2x60 MVAR 500 kV Line Reactor, 9- 500 kV PCB and associated equipment, 8-230 kV PCB and associated equipment Laoag 230 kV SS: 2-230 kV PCB and associated equipment New Bantay 230 kV SS: 2x100 MVA, 230/69 kV Power Transformer, 10- 230 kV PCB and Associated equipment, 7-69 kV PCB and associated equipment 	 Laoag 230 kV Tie Line: ST-DC, 4-795 MCM ACSR, 1 km Bantay bus-in 230 kV Line: ST-DC, 1-795 MCM ACSR, 2 km 			
t involves the developmen ransmission corridor in No ne Luzon Grid and a new ith a transformer capacity	orthwestern part of 500kV SS in Laoag					
•	e bulk generation of etro Manila. It also he entry of new will connect to of a 60 km, 500 kV, 'L from Pinamucan	 Pinamucan 500 kV SS: 4-500 kV PCB and associated equipment Tuy 500 kV SS: 3-500 kV PCB and associated equipment 	 Pinamucan-Tuy 500 kV TL: ST-DC, 4-795 MCM ACSR, 60 km Bilan Bilan<td>16,234M</td><td>Batangas</td><td>Dec 203:</td>	16,234M	Batangas	Dec 203:
30 kV PROJECTS Iarilao–Mexico 230 kV •	System Reliability	 Marilao 230 kV SS: 4-230 kV PCB and 	 Marilao-Mexico 230 kV TL: 	5,988M	Pampanga,	Aug 2032

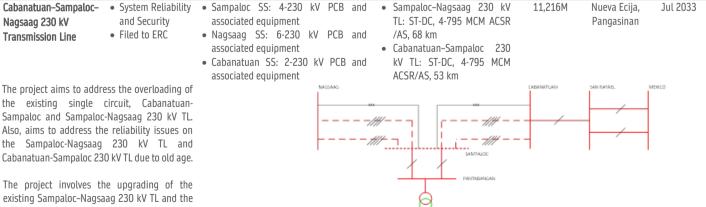
- Transmission Line
- and Security • Filed to ERC

The project aims to address the overloading of Quezon-Mexico 230 Line during N-1 contingency and maximum generation dispatch and avoid the generation curtailment.

- associated equipment Mexio 230 kV SS: 4-230 kV PCB and
 - associated equipment

ST-DC, 4-795 MCM ACSR, 42 km




230 kV Transmission **Generation Entry** • Filed to ERC Line

The project aims to address overloading of Quezon-Doña Imelda 230 kV TL during single outage contingency and to improve voltage regulation within Metro Manila.

The project involves the construction of the 10 km SP-DC, 2-410 mm² TACSR/AS, 230 kV Line from Navotas to Doña Imelda 230 kV SS. This project will provide additional transmission corridor that will complement the existing single-circuit Quezon (Balintawak)-Doña Imelda (Araneta)-Paco-Muntinlupa (Sucat) 230 kV TL.

 Navotas-Doña Imelda 230 kV 3,359M Metro May 2033 TL: SP-DC, 2-410 mm² Manila TACSR/AS, 10.0 km

Sampaloc-Cabanatuan 230 kV TL from a single

TRANSMISSION LINE						
Project Name and Description circuit, 1-795 MCM ACSR 795 MCM ACSR conducto		Project Co Substation	mponents Transmission Line	Project Cost (Million Pesos)	Location	ETC
Tower Resiliency of Bicol Transmission Facilities	 System Reliability and Security Filed to ERC 		 Naga-Tiwi A-Daraga 230 kV TL: ST-DC, 1-410 mm² STACIR, 105 km Naga-Tiwi C 230 kV TL: ST- DC, 1-410 mm² STACIR, 60 km Daraga-Tublijon 230 kV TL: ST-DC, 1-410 mm² STACIR, 35 km Naga-Labo 230 kV TL: ST-DC, 1-410 mm² STACIR, 98.5 km 	10,730M	Camarines Sur, Camrines Norte, Albay, Sorsogon	Apr 2034
The project aims to rep tower structure of Naga- Tublijon and Naga-Lab kilometer-per-hour wir cannot withstand strong will involve the constru- that able to withstand kilometer-per-hour. Th tower structures will er power supply in Bicol typhoons.	-Tiwi- Daraga, Daraga- bo TL which has a 180 ndspeed design that g typhoons. The project ction of new TL towers a wind speed of 300 e resiliency of these nsure the continuity of	LABO SUBSTATION	TINI A 2 X 59 MW G G G DARAGA BU	тив вас	LJON SWB MAN C 55 MW	
Bauang-La Trinidad 230 kV Transmission Line Upgrading The project aims to add the old Bauang-La Trini N-1 Contingency. The resolve the reliability is: La Trinidad 230 kV T exceeded its asset life reliability issue of the ol at La Trinidad SS. The project involves th km 230 kV TL that will existing Bauang-La T Included also in the pr of 230 kV PCB due to er replacement of underra Trinidad SS.	idad 230 kV TL during project target is to sue of the old Bauang- TL which had already e and as well as the ld and underrated PCB e construction of 35.8 utilize the ROW of the Trinidad 230 kV TL. roject the replacement nd of economic life and	• La Trinidad 230 kV SS: 9-230 kV P(and associated equipment, 3-69 l PCB and associated equipment.	KV TL, ST-DC, 4-795 MCM ACSR, 35.8 km	5,620M	La Union Benguet	Dec 203
Northern Luzon 230 kV Loop	 Generation Entry Filed to ERC 	 Laoag 230 kV SS: 4-230 kV PCB ar associated equipment Bangui 230 kV SS: 2x300 MV 230/115 kV Power Transformers ar Accessories, 14-230 kV PCB ar associated equipment, 18-115 kV PC and associated equipment, 4x50 MV/ 	DC, 2-795 MCM ACSR/AS, 50 /A km • Lal-lo-Pudtol 230 kV TL: ST-DC, 2-795 MCM ACSR/AS, 38 km CB	34,069M	Ilocos Norte, Apayao, Cagayan	Dec 203

X

Project Name	Project Driver		Project Compo	onents		Project Cost (Million		
and Description		Substa	tion	Transmiss	sion Line		Location	ETC
The project provides corridor to accommodate other power plants in Luzon. The Ilocos Region among the areas with generation potential. A potential is also identific Kalinga, Apayao and ensures the system relia flexibility in the Ilocos Valley through the 230 can continuously be serv	renewable energy and the Northern part of has been identified as n huge wind power lso, Hydro generation ed in the Provinces of Ifugao. This project ibility and operational Region and Cagayan kV looping. The loads	Accessories, 18-23 associated equipme and associated equip 230 kV Shunt Reactor kV Capacitor • Pudtol 230 kV SS: 1 associated equipmen	/ SS: 2x300 MVA Transformers and 0 kV PCB and ent, 8-69 kV PCB oment, 4x25 MVAR or, 4x25 MVAR 230 0-230 kV PCB and nt -230 kV PCB and	TL: ST-DC, ACSR/AS, 70 km • Pudtol-Sanchez	2-795 MCM n z Mira 230 kV 2-795 MCM			
redundancy and will ens		Laoag	Bangui	Sanchez	Mira Pi	udtol	Lal-lo	
generation capacity in the to the rest of the grid.	e area can be delivered	1.1				:	1.1	
Project involves the dev kV substations in the Luzon Grid to conr development and local lu Substations are Bang Sanchez Mira in Cag Apayao. The project will of Laoag and Lal-lo (Mag termination of the new 2	northern part of the nect the generation oads in the area. These jui in Ilocos Norte, ayan and Pudtol in also include expansion napit) 230 kV SS for the 30 kV lines. Additional						GENED	

SUBSTATION						
Project Name and	Project Driver	Project Co	nponents	Project Cost (Million	Location	ET
Description		Substation	Transmission Line			
500 kV PROJECTS						
Tagkawayan 500 kV Substation	 Generation Entry Filed to ERC 	Tagkawayan 500kV SS: 2x1,000MVA, 500/230kV Power Transformers 2x90 MVAR, 500 kV Shunt Reactor and Accessories 12-500kV PCB and associated equipment 10-230 kV PCB and associated equipment	 Tagkawayan Bus-in to F Naga 500 kV Line, ST-I MCM ACSR, 1km 	0	Tagkawayan, Quezon Province	Fe 203
of Camarines Norte and	Quezon. It also includes s 230 kV SS PCB to	 Pagbilao 500 kV SS: 2-500 kV PCB and associated equipment Tayabas 230 kV SS: 14-230 kV PCB and associated equipment 	•	Taskausuan		
entry of generating pla and Quezon Province.		Tayabas	Pagbilao	Tagkawayan	H&	WB
It involves the developm SS in Tagkawayan, Que transformers. The SS is 500 kV system by utilizir	zon with 2x1,000 MVA			nghidao 200 kW Liver ref 500 kW		

230 kV lines, Laoag-Bangui, Bangui-Sanchez Mira, Sanchez Mira-Pudtol and Pudtol-Lal-lo 230 Line will be constructed to complete the

500 kV system by utilizing the portion of the 500

kV-designed Pagbilao-Naga 230 kV Line.

230 kV Loop.

Page | 88

Naga

251,000 MVA

ł OPPEI

SUBSTATION						
Project Name and	Project Driver	Project Col		Project Cost (Million	Location	
Description Palauig 500 kV Substation	and Status Generation Entry Filed to ERC 	Substation Palauig 500 kV SS: 2x1000 MVA Power Transformer, 18-230 kV PCB and associated equipment, 2x90 MVAR, 500 MVAR Shunt Reactor Palauig 230 kV SS: 13-230 kV PCB and associated equipment, 3x100 MVAR, 230 kV Shunt Capacitor	 Transmission Line Palauig 'bus-in' along Castillejos-Bolo 500 kV TL: ST- DC, 4-410 mm² TACSR, 2x1.0 km Botolan-Palauig 230 kV TL: ST- DC, 4-795 MCM ACSR, 18.3 km 	Pesos) 10,784M Labrador	Zambales	Dec 2033
The project aims to accomm of various power plants through the implementat 500/230 kV in Palauig, connected through "bus-in Castillejos-Bolo 500 kV TL Western Luzon 500 kV Project. In addition, a ne implemented fron Botolan require Botolan SS to be of existing Olongapa-Botolan-	s in Western Luzon tion of 2x1,000 MVA Zambales. It will be " along the proposed , which is part of the Backbone (Stage 2) w 230 kV TL will be n to Palauig. This will disconnected from the	 Botolan 230 kV SS: 2- 230 kV PCB and associated equipment 	To Proposed VREs Botolan To Proposed To Proposed Unit4 to Unit6 To Proposed VREs To Proposed Congapo SBMA	Palauig	00 MVA • Bolo astillejos	
230 kV PROJECTS San Fabian 230 kV Substation	 Load Growth Filed to ERC 	 San Fabian 230 kV SS: 2x100 MVA, 230/69 kV Power Transformer, 10-230 kV PCB and associated equipment, 4-69 kV PCB and associated equipment 	 San Fabian (NGCP) 'Bus-in' to Bauang-BPPC-Balingueo 230 kV TL: ST-DC 1-795 MCM ACSR/AS, 3.76 km Bolo-Balingueo 230 kV TL (Upgrading): ST-DC, 4-795 MCM, 40.67 km San Fabian (NGCP)-San Fabian (LUELCO) 69 kV TL: SP-SC, 1-795 MCM, 1.36 km 	8,828 M	La Union	Oct 2032
The project aims to cater the the Pangasinan and La U strategically located in Sa to cater the loads in Pang The proposed SS will serve SS for LUELCO, DECORP addition, the proposed up Balingueo 230 kV TL w overloading of the line due growth in Ilocos Region.	Union. The project is n Fabian, Pangasinan jasinan and La Union. e as a new drawdown P and CENPELCO. In ograding of the Bolo- vill address the N-1		Bauang 3x100 MVA 12 km 21.03 km 0.45 km Aringay 17.1 km 0.66 km Damortis 7.77 km 0.9 km San Fabian (LUELCO) 0 195 MW BPPC			
The project involves the d 230 kV SS in San Fabian, P the increasing load growth Union. The new 230 kV drav have a 2x100 MVA transfor be linked to the Luzon (connection to the exis Balingueo 230 kV TL accommodate the increasi Region, the upgrading of 230 kV TL is necessary	Pangasinan to address in Pangasinan and La wdown substation will rmer capacity and will Grid through 'bus-in' sting Bauang-BPPC- L. Furthermore, to ing demand in Ilocos	31.39 km 31.3 Balingueo	28 km 2x100 MVA San Fabian (DECORP) 2.4 km 1.36 km (DECORP) 2.4 km 1.26 km 5.76 km 24.33 San Fabian Guilig Mangaldan San Jacinto 1 67 km Urdaneta 10.38 km 1.36 km 1.28 km 1.21 km 1.28 km 1.28 km 1.21 km 1.28 km 1.28 km 1.21 km 1.28 km 1.21 km 1.28 km 1.21 km 1.28 km 1.21 km 1.28 km 1.21 km 1.2	0.23 km - ()- 3.31 km	00 MVA Manuel	
•						

X

UX.

X

Project Name and	Project Driver	Project Components		Project Cost (Million	Location	ETC
Description and Status	and Status	Substation	Transmission Line	Pesos)	LUCATION	
Malaya 230 kV Collection Station		Malaya Collector Station: 6-230 kV PCB and Associated equipment, 10-115 kV PCB and associated equipment	Malaya 230 kV Line: ST-DC, 4- 795 MCM ACSR, 0.5 km	2,673M	Rizal	Dec 2032
The proposed Malaya 230 accommodates the entry Diesel Plant of AC Energy Laguna Bay 2 Solar Power	of 300 MW Modular and the 300 MW PUAC			****	TAYBA	S

Malaya 230 kV Substation Project Sta Maria 500 kV Substation Project

The project involves the development of Malaya 230 kV Collector Station adjacent to the existing Malaya 230/115 kV SS. The Lumban, Taytay 230 kV line and the 2x300 MVA transformer in the existing Malava SS will be terminated and transferred to the new SS. Overall, the new SS will have a capacity of 2x300 MVA 230/115 kV transformers to accommodate the generation and serve loads of MERALCO.

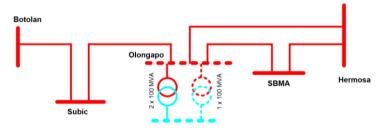
Laguna Bay 2 Solar Power Plant and other power

plant proponents.

Olongapo 230 kV		Load Growth
Subsation Upgrading	٠	System Reliability
	٠	Filed to ERC

The project aims to improve the reliability of the SS. This project will allow the continuous source of power to the load even with the failure of one of its breakers, the project will also address overloading of the transformers during normal and N-1 contingency.

The Olongapo 230 kV SS Upgrading Project involves the upgrading of the existing single-bus configuration of Olongapo 230 kV SS to a doublebus configuration using GIS. The project also includes the upgrading of the existing 50 MVA, 230/69 kV transformer to a 100 MVA, 230/69 kV transformer. In addition, the project also includes the revamping of SS secondary equipment and flood control program to prevent flood from occurring inside the SS.


For additional proposed projects within 2031 to 2040, these will be focusing on the improvement of system reliability. On the 500 kV network, the Bataan-Cavite 500 kV TL will be implemented. In the northern part of Luzon Grid, the transmission backbone for the province of Aurora will be developed through the Baler-Dinadiawan-Santiago TL Project. The Sagada-San Esteban 230 kV TL will provide transmission corridor in Mountain Province by completing the La Trinidad-

230/69 kV Power Transformer, 8-230 kV PCB (GIS) and associated equipment, 9-69 kV PCB and associated equipment

Olongapo 230 kV SS: 1x100 MVA,

ANTIPOLO

LEGEND

Sagada-San Esteban 230 kV transmission loop. Another transmission corridor will also be developed through the proposed Capas-Kadampat 230 kV Line.

69

2x300 MVA

2.638M

LUMB

OLD MALAYA

Zambales

Oct

2033

To accommodate additional generation capacities, the Kalinga 500 kV SS will be developed to cater to the proposed Hydropower Plants in the area. In Sorsogon, the Matnog 230 kV SS will be developed to cater to wind farm projects

Page | 90

 Table 8.3 List of Additional Proposed Projects in Luzon for the period 2031-2040

0
5
<u>a</u>
2
Ö
00

Project Name	Description	Location
500 kV PROJECTS Luzon-Visayas HVDC Bipolar	To provide an additional 440 MW transfer capacity between Luzon and Vianue	Camarines Sur and Leyte
operation Baras–San Antonio 500 kV Transmission Line	 Visayas. To support the delivery of bulk generation going to the loads in Central Luzon, especially during Maximum South Generation Scenario. 	Rizal, Nueva Ecija
Baras-Pinamucan 500 kV Transmission Line	 To support the delivery of bulk generation from Batangas City Area going to Metro Manila. 	Rizal, Batangas
Santiago-Kabugao 500 kV Transmission Line	 To accommodate the entry of power plants in Kabugao to ensure that the power supply will meet the demand load of Luzon Grid and will increase the reliability of the 500 kV backbone. 	Apayao, Isabela
Bataan-Cavite 500 kV Transmission Line	• To reinforce the TL corridor supplying the loads of Metro Manila.	Bataan, Cavite
Naga-Tublijon 500 kV Transmission Line Project	 To further strengthen the reliability of the transmission network Bicol Region, the existing 230 kV TL from Naga SS to Bacman SS will be upgraded to 500 kV voltage level. This will also accommodate generation capacity addition in the Southernmost part of the Grid. 	Camarines Sur, Albay, Sorsogon
230 kV PROJECTS		
San Jose–San Rafael 230 kV Transmission Line Upgrading	 To strengthen the reliability of San Jose—San Rafael 230 kV TL by upgrading the existing SC line to DC lines. And increasing its transmission capacity from 300 MVA to 1,275 MVA. 	Bulacan
La Trinidad–Sagada 230 kV Transmission Line	• To accommodate the upcoming HEPP and Wind Farms on Mountain Province	Benguet
Bauang-Balaoan 230 kV TL Upgrading	 To upgrade the single bundle Bauang-Balaoan 230 kV line to 4-795 MCM ACSR to accommodate the generation capacities and increase of demand in La Union. 	La Union
Cabanatuan–San Rafael–Mexico 230 kV Transmission Line Upgrading	 To address the low reliability of the existing lines due to the aging of the conductor cable. 	Nueva Ecija, Pampanga, Bulacan
Hermosa–Mexico 230 kV Transmission Line Upgrading	• To address the anticipated overloading of the Hermosa-Mexico 230 kV line due to the increase in the demand of Pampanga Province.	Bataan, Pampanga
Calaca-Salong 230 kV Transmission Line 2	• To provide provision for single outage contingency for the existing single circuit Calaca-Salong 230 kV TL.	Batangas
Pasay–Taguig 230 kV Transmission Line	• To increase the reliability of 230 kV TL supplying the loads of Metro Manila.	Metro Manila
Navotas-Pasay 230 kV Transmission Line	 To provide additional reliability of supply in Metro Manila through a new transmission corridor that will connect the northern and southern part of the grid. 	Metro Manila
Pasay–Limay 230 kV Transmission Line	• To increase the reliability of 230 kV TL supplying Meralco Sector 1 and secure the supply of power in the area.	Bataan, Metro Manila
Taguig-Muntinlupa 230 kV Transmission Line 2	 To strengthen the corridor of the 230 kV TL in Metro Manila due to the continuous increase of loading in Metro Manila. In addition, the proposed additional 230 kV line will improve the reliability of the system as it will provide N-1 contingency. 	Metro Manila
Sagada-San Esteban 230 kV Transmission Line	• To provide a new 230 kV transmission corridor in Mountain Province Area by completing the La Trinidad–Sagada–San Esteban transmission loop.	Mountain Province, Ilocos Sur
Dinadiawan-Santiago 230 kV TL	• To increase the system reliability on the Northeastern side of the Luzon Grid.	Isabela, Aurora
Baler-Dinadiawan 230 kV Transmission Line	 To construct a 52.6 km, ST-DC, 1-795 MCM ACSR/AS 230 kV TL from Baler 230 kV SS to Dinadiawan 230 kV SS to provide additional reliability of power supply in Northeastern side of the Luzon Grid. 	Isabela, Aurora
Capas-Bolo 230 kV Transmission Line	• To construct an 80 km, ST-DC, 4-795 MCM ACSR 230 kV TL from Capas 230 kV SS to Bolo 230 kV SS to provide additional reliability of power supply in Central Luzon.	Tarlac, Pangasinan
69 kV PROJECTS South Luzon 69 kV Transmission Line Upgrading 1 North Luzon 60 kV Transmission	 To relieve the overloading of various 69 kV TL in NGCP's South Luzon Region, and to prevent load dropping and power interruptions during peak loadings. To mitigate the imposed on everloading of various 60 kV TL op North Luzon 	Batangas, Camarines Norte, Camarines Sur, Albay
North Luzon 69 kV Transmission Line Upgrading 1	 To mitigate the impending overloading of various 69 kV TL on North Luzon, and to prevent the undervoltage problem on various points along the 69 kV TL. 	Ilocos Sur, Benguet, Cagayan, Bataan, Zambales
Mexco-Clark 69 kV Transmission	• To cater to the growing demands of the loads of PRESCO, AEC, Quanta Paper,	Pampanga

Project Name	Description	Location
Marilao 500 kV Substation Expansion	 To cater additional generation capacity in the Northern and Western region, and increase the reliability of the 500 kV system of the Luzon Grid by providing a new 500/230 kV drawdown SS for Metro Manila which will relieve the loading of the critical San Jose 500 kV SS 	Bulacan
Baras 500 kV Substation	 To accommodate the entry of power plants in Rizal to supply the demand load of Metro Manila and swill increase the reliability of the 500 kV backbone of the Luzon Gird. 	Rizal
an Antonio 500 kV Substation	• To provide a new 500 kV drawdown SS to Central Luzon.	Nueva Ecija
laminos EHV Substation	 To accommodate the entry of power plants in Batangas and Quezon Province and to supply the demand of South Luzon. This will also increase reliability of the 500 kV backbone of the South Luzon Grid 	Laguna
acolor 500 kV Substation	 To address the load growth in Pampanga area. The 500 kV TL of the proposed Bacolor 500 kV SS will bus-in along Marilao-Hermosa 500 kV TL, on the other hand, the 230 kV will bus-in along Mexico-Guagua 230 kV TL. 	Pampanga
Dasmariñas 500 kV Substation Jpgrading	 To upgrade the existing capacity of Dasmariñas SS to serve the increasing loads of various Substations in the area. 	Cavite
Calinga 500 kV Substation	 To accommodate the entry of power plants in Kalinga to ensure that the power supply will meet the demand load of Luzon Grid and will increase the reliability of the 500 kV backbone. 	Kalinga
aguig EHV Substation Expansion	 To serve the load growth in Metro Manila through the installation of a 3rd 1000 MVA 500/230 kV Transformer bank at Taguig 500 kV SS 	Metro Manila
Castillejos 500 kV Expansion	 To accommodate the entry of power plants through the installation of a 3rd 1000 MVA 500/230 kV Transformer bank at Castillejos 500 kV SS 	Zambales
Santiago 500 kV Substation Expansion	 To accommodate the entry of power plants through the installation of a 3rd 1000 MVA 500/230 kV Transformer bank at Santiago 500 kV SS 	Isabela
laga 500 kV Substation Expansion	 To accommodate the entry of power plants through the installation of a 3rd 1000 MVA 500/230 kV Transformer bank at Naga 500 kV SS 	Camarines Sur
30 kV PROJECTS		
San Agustin 230 kV Substation	 To provide an additional drawdown SS in the province of Tarlac to address the anticipated overloading of the existing 230/69 kV transformers and associated 69 kV TL both in the province of Tarlac and Pangasinan. The project will also improve the reliability of the supply of loads in Tarlac and Pangasinan acting as another connection point of distribution utilities in the area. 	Tarlac
juagua 230 kV Substation	 To provide an additional drawdown SS in the province of Pampanga. This project will improve the reliability of the supply of loads in Pampanga acting as another connection point of distribution utilities in the area. 	Pampanga
palit 230 kV Substation	 To provide an additional drawdown SS in the province of Pampanga. This project will improve the reliability of the supply of loads in Pampanga acting as another connection point of distribution utilities in the area. 	Pampanga
riga 230 kV Substation	• To cater the Load Growth of the Province of Camarines Sur.	Camarines Sur
lalvar 230 kV Substation	• To cater the Load Growth of the Province of Batangas.	Batangas
alanga 230 kV Substation	 To provide an additional drawdown SS in the province of Bataan. This project will improve the reliability of the supply of loads in Bataan since it will act as another connection point of distribution utilities in the area. 	Bataan
an Isidro 230 kV Substation	 To provide an additional drawdown SS in the province of Nueva Ecija. This project will improve the reliability of the supply of loads in Nueva Ecija since it will act as another connection point of distribution utilities in the area. 	Nueva Ecija
BGC 230 kV Substation	• To address the anticipated overloading of the existing 230 kV SS serving Sector 3 of the MERALCO Franchise.	Metro Manila
alenzuela 230 kV Substation	 To address the anticipated overloading of the existing 230 kV SS serving Sector 1 of the MERALCO Franchise. 	Metro Manila
latnog 230 kV Substation	 To accommodate the entry of power plants in Sorsogon particularly in Matnog to ensure that the power supply will meet the demand load of Luzon Grid. 	Sorsogon
luvali 230 kV Substation	• To provide additional drawdown SS in Sta. Rosa, Laguna. This project will improve power quality and the reliability of supply MERLACO's Laguna Sector as another connection point in the area.	Laguna
abatuan 230 kV Substation	 To provide additional drawdown SS in the province of Isabela. This project will improve the reliability of supply of loads in Isabela as another connection point of distribution utilities in the area. 	Isabela
North Luzon Substation Upgrading 3	 To cater the load growth and provide N-1 contingency to various SS in NGCP's North Luzon Region. Without the project, the customers being served by these Substations will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Ilocos Norte, Benguet, Pangasinan, Isabela, Cagayan, Bataan, Zambales, Tarlac Pampanga, Nueva Ecija

3

Ų

X

X

Chapt	~
- pt	5
ot	a
	Pt
e	e
00	00

Project Name	Description	Location
South Luzon Substation Upgrading 3	 To cater the load growth and provide N-1 contingency to various SS in NGCP's South Luzon Region. Without the project, the customers being served by these SS will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Batangas, Albay
San Mateo 230 kV Substation	 To provide an additional drawdown SS in San Mateo, Rizal. This project will also improve power quality and the reliability of supply in MERLACO's Sector 2 since it will act as another connection point in the area. 	Metro Manila
Bustos 230 kV Substation	 To support the load growth in Bulacan and will help unload the San Rafael 230 kV SS. 	Bulacan
Sariaya 230 kV Substation	 To cater the Load Growth of the Province of Quezon and the eastern part of Batangas. 	Quezon
Presentacion 230 kV Substation	 To cater the Load Growth in the Eastern part of Camarines Sur. It will utilize the proposed Naga-Presentacion 230 kV TL. The project will also be the connection in the future of the Catanduanes Luzon Island Interconnection. 	Camarines Sur
North Luzon Substation Jpgrading 4	 To cater the load growth and provide N-1 contingency to various SS in NGCP's North Luzon Region. Without the project, the customers being served by these SS will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Pangasinan, Cagayan, Zambales, Pampanga, Nueva Ecija
iouth Luzon Substation Jpgrading 4	 To cater the load growth and provide N-1 contingency to various SS in NGCP's South Luzon Region. Without the project, the customers being served by these SS will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Batangas, Camarines Sur, Albay, Sorsogon
Project Name	Description	Location
230 kV PROJECTS		
Luzon Voltage Improvement Project 7	 The project aims to provide additional reactive power support in the network to maintain the system voltage within ±5% of the nominal voltage during normal and single outage contingencies as prescribed under the PGC. LVIP 7 involves the installation of capacitors and STATCOM in various Luzon 230 kV substations 	
Luzon Voltage Improvement Project 8	 To provide additional reactive power support in Pampanga, Laguna, and Batangas in order to maintain the system voltage within ±5% of the nominal value during normal and single outage contingencies as prescribed under the PGC. The proposed project involves the installation of capacitors in various 230 kV substations in Luzon. 	

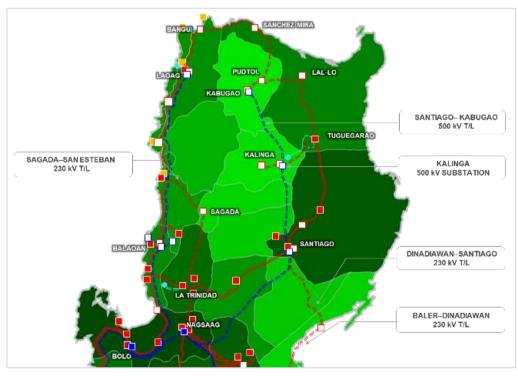


Figure 8.10: North Luzon Transmission Outlook for 2031-2040

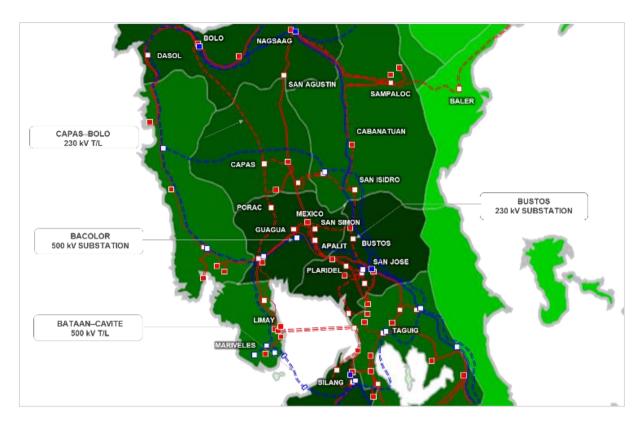


Figure 8.11: Central Luzon Transmission Outlook for 2031-2040

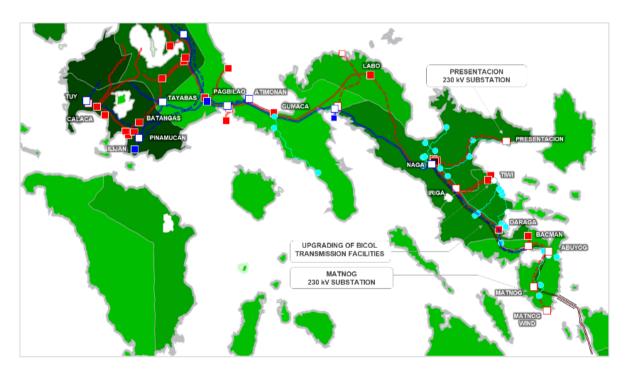


Figure 8.12: Bicol Region Transmission Outlook for 2031-2040

VISAYAS TRANSMISSION OUTLOOK

This section will provide a list of ERC-approved projects on various stages of implementation and the other identified system requirements in the Visayas Grid but are still subject to regulatory approval prior to implementation. ERC applications for some of the new projects have been made already.

With reference to the DOE list, Cebu and Panay are the main sites for large generation capacity additions specifically for coal-fired power plants. For RE-based plants, on the other hand, it can be observed that the concentration is in Negros and Panay Islands, most of which have already materialized. Such direction of generation development would further emphasize the need to reinforce the 138 kV submarine cable interconnections between Cebu, Negros, and Panay.

Presently, the 230 kV facilities are in Leyte and Cebu only but the development of a 230 kV transmission backbone to reach up to Panay Island has been part of the master plan to support the generation developments and also to avert the criticality of island grid separations due to the present long radial line configuration of the Visayas Grid. The implementation of this project, which is called Cebu-Negros-Panay 230 kV Backbone, is divided into three stages. The first stage is the additional submarine cable between Negros and Panay. This project was already energized in October 2016 and addresses the congestion and market issues being encountered due to the limited capacity of the existing single-circuit 138 kV link. Also, the existing Negros-Cebu 138 kV can only export a maximum of 180 MW of excess generation capacity. This will be insufficient just with the entry of committed power plants only. Thus, the second and third stages of the new 230 kV backbone are the next major requirements in the Visayas Grid.

Within Cebu Island where the load center is located, the development of new 230 kV load substations and implementation of new 230 kV transmission line extensions are required to ensure adequate supply facilities in the long term. Similar to other urbanized areas, securing ROW in Cebu is also a major challenge in transmission project implementation.

In Panay, the new developments in the tourism industry in Boracay Island would result in an increase in power supply requirements. It is projected that the existing 69 kV submarine cable serving the island would not be adequate in supporting load growth in the coming years. Thus, this is also one of the areas requiring grid reinforcements through the installation of additional submarine cable under the Nabas–Caticlan–Boracay TL Project. Large capacities of wind and hydro are also being proposed in Panay that will trigger the installation of the second circuit 230 kV submarine cable between Negros and Panay.

Another major submarine cable project that is for implementation is the Cebu-Bohol 230 kV Interconnection Project. Presently, Bohol Island has a power deficiency issue due to limited power sources on the island. In 2022, the maximum demand in Bohol has already reached 97 MW. The implementation of the Cebu-Bohol 230 kV Interconnection Project would significantly boost the supply reliability to support the load growth in the island as will be brought about by its direct access to the bulk generations located in Cebu. It can be noted also that during Typhoon Yolanda and the recent earthquake incident which affected the transmission facilities in Ormoc, Leyte area, the supply for Bohol Island was also interrupted because there is no alternate source for the island. Such concern will also be addressed by Cebu-Bohol 230 kV Interconnection Project.

By 2030, future developments in terms of the commercial and industrial sector in the Visayas that would increase the power supply requirements are being expected. To accommodate these developments, new drawdown substations are proposed in Visayas. This will cater for the increase in demand in each area. Furthermore, additional submarine cable will be laid between Panay and Guimaras Island to provide reliability on the powerplants located in Guimaras Island. Proposed powerplants in Northern Samar will be accommodated with the extension of the 138 kV backbone from Calbayog to San Isidro. Moreover, it will provide reliability as the demand in the Northern Samar increases.

9.1 Transmission Outlook for 2023-2030

Transmission projects that are currently being implemented and planned for the Visayas in the period 2023-2030 are listed in Table 9.1 below.

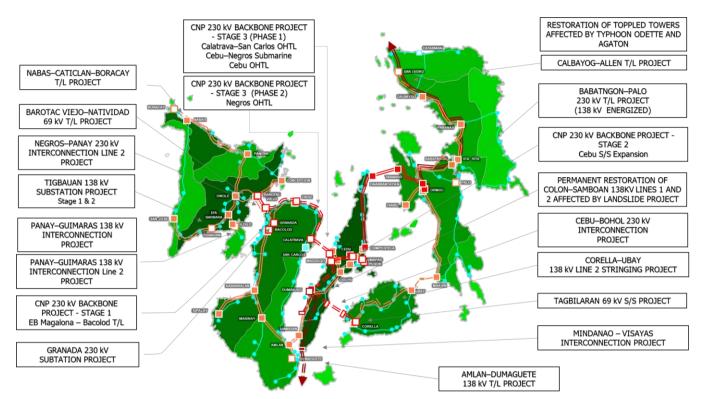


Figure 9.1: Visayas Transmission Outlook for 2023-2030

Figure 9.2: Metro Cebu Transmission Outlook for 2023-2030

Table 9.1 List of Visayas transmission projects for the period 2023-2030

Project Name and Project Driver	Project Driver	Project Co				
		Substation	Transmission Line		Location	ETC
230 kV PROJECTS						
Cebu-Negros- Panay 230 kV Backbone Project - Stage 2	 Generation Entry ERC-approved 	 Cebu 230 kV SS: 3x300 MVA 230/138 kV Power Transformer, 10- 230 kV PCB (GIS) and 3-138 kV PCB. Construction of Warehouse 	 Extension of Magdugo-Cebu 230 kV TL, ST/SP-DC, 2-610 mm² TACSR OHTL, 0.91 km Extension of Cebu-Lapulapu 230 kV TL, Underground Cable System, SC of 1200 MW 	1,933M	Cebu, Negros, and Panay	Aug 2023

coal-fired power plant in Toledo City, Cebu, and is intended to supply additional power to the load centers in Metro Cebu. However, the existing transmission system between the area of Toledo and the major drawdown substations in Metro Cebu has limited capacity to effectively accommodate the entire generation capacity of the new power plant.

To ensure the effective full generation dispatch of TVI, a new transmission corridor, which includes a high-capacity TL and new SS facilities, is being constructed towards Metro Cebu. The TL portion was previously classified as connection assets and will be implemented by the power plant proponent. On the other hand, the SS portion is classified as a transmission asset, hence, the object of this project. It can be noted also that the TL which will be developed from Magdugo to Cebu will serve as an integral part of the 230 kV backbone in the Visayas.

The project involves the construction of 230 kV facilities in the existing Cebu 138 kV SS to facilitate the connection of the proposed TL from Toledo.

Cebu-Negros-• Generation Panay 230 kV Entrv Backbone Project -• **ERC**-approved Stage 1

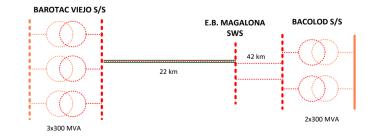
To ensure the effective transmission of excess power generation from Panay towards Negros, a high-capacity transmission corridor is being proposed. Strategically, the project will be designed consistent with the long-term transmission master plan of having a 230 kV transmission backbone in the Visayas by establishing a 230 kV interconnection from Panay to Cebu.

The project involves the development of a transmission corridor from Barotac Viejo SS to Bacolod SS and will be composed of the submarine cable system and overhead TL. It is designed at 230 kV voltage level but is currently energized and operated at

mponents Transmission Line		Location	
 Extension of Magdugo-Cebu 230 kV TL, ST/SP-DC, 2-610 mm² TACSR OHTL, 0.91 km Extension of Cebu-Lapulapu 230 kV TL, Underground Cable System, SC of 1200 MW 	1,933M	Cebu, Negros, and Panay	Aug 2023
 Capacity 0.415 km 1st stringing and 2-795 MCM ACSR ST/SP-DC, 0.240km Extension of Cebu-Lapulapu 230 kV Lines, Underground Cable System, Single Circuit of 1200 MW Capacity, 0.540 km, 2nd Stringing Extension of Colon-Quiot-Cebu 138 kV TL, 138 kV Underground Cables, DC of 180 MW capacity, 0.232 km. 			
MAGDUGO S/S		CEBU S/S	
	//	О О Зх300 МVА	
	Transmission Line • Extension of Magdugo-Cebu 230 kV TL, ST/SP-DC, 2-610 mm ² TACSR OHTL, 0.91 km • Extension of Cebu-Lapulapu 230 kV TL, Underground Cable System, SC of 1200 MW Capacity 0.415 km 1 st stringing and 2-795 MCM ACSR ST/SP-DC, 0.240km • Extension of Cebu-Lapulapu 230 kV Lines, Underground Cable System, Single Circuit of 1200 MW Capacity, 0.540 km, 2nd Stringing • Extension of Colon-Quiot- Cebu 138 kV TL, 138 kV Underground Cables, DC of 180 MW capacity, 0.232 km. MAGDUGO S/S	 Transmission Line (Million Pesos) Extension of Magdugo-Cebu 230 kV TL, ST/SP-DC, 2-610 mm² TACSR OHTL, 0.91 km Extension of Cebu-Lapulapu 230 kV TL, Underground Cable System, SC of 1200 MW Capacity 0.415 km 1st stringing and 2-795 MCM ACSR ST/SP-DC, 0.240km Extension of Cebu-Lapulapu 230 kV Lines, Underground Cable System, Single Circuit of 1200 MW Capacity, 0.540 km, 2nd Stringing Extension of Colon-Quiot-Cebu 138 kV TL, 138 kV Underground Cables, DC of 180 MW capacity, 0.232 km. 	Transmission Line Project Cost (Million Pesso) Location • Extension of Magdugo-Cebu 230 kV TL, ST/SP-DC, 2-610 mm ² TACSR 0HTL, 0.91 km 1,933M Cebu, Negros, and Panay • Extension of Cebu-Lapulapu 230 kV TL, Underground Cable System, SC of 1200 MW 1,933M Cebu, Negros, and Panay Capacity 0.415 km 1st stringing and 2-795 MCM ACSR ST/SP-DC, 0.240km 1,933M Cebu, Negros, and Panay • Extension of Cebu-Lapulapu 230 kV Lines, Underground Cable System, Single Circuit of 1200 MW Capacity, 0.540 km, 2nd Stringing 1,933M Cebu, Negros, and Panay • Extension of Colon-Quiot- Cebu 138 kV TL, 138 kV Underground Cables, DC of 180 MW capacity, 0.232 km. CEBU S/S • MAGDUGO S/S • CEBU S/S • MAGDUGO S/S • Of 35 km • Of 35 km

- Bacolod SS Expansion: 2-138 kV PCB.
 - Barotac Viejo SS (Expansion): 5-138 kV PCB and associated equipment 1x40 MVAR, 138 kV Shunt Reactor
- Bacolod-E. B. Magalona, 230 kV TL, ST-DC, 2-795 MCM ACSR, 42 km.

6,723M


Cebu, Negros, and

Panay

Sep

2023

- Barotac Viejo-E.B. Magalona 230 kV S/C (initially energized at 138 kV), Single Circuit, 1-1600 mm2 XLPE, 18.15 km Barotac Vieio-E.B. Magalona
- 230 kV U/G (initially energized at 138 kV), Single Circuit, 3-1600 mm2 XLPE, 0.75 km

TRANSMISSION LINE					
Project Name and Project Driver Description and Status	Project Con Substation	mponents Transmission Line		Location	
138 kV. The submarine cable component was already completed in October 2016. The project will also involve associated expansion works at Barotac Viejo and Bacolod substations.	5055000				
Negros-Panay 230 kV Interconnection Line 2 Project - Filed to ERC The project aims to address the need to increase the interconnection capacity between Negros and Panay to cater the incoming large generators in Panay. This entails an additional circuit of 230 kV submarine cable between Negros and Panay to allow for the full dispatch of the power plants in the island of Panay.	 Barotac Viejo SS (Expansion): 1x70 MVAR, 230 kV Line reactor, 2-230 kV PCB E.B. Magalona SS (Expansion): 1x70 MVAR, 230 kV Line reactor, 3- 230 kV PCB 	Barotac Viejo-E. B. Magalona, 230 kV, SC, 3-1,600 mm2 XLPE Submarine Cable, 22 km. BAROTAC VIEJO S/S 22 km 22 km 3x300 MVA	4,079M E.B. MAGALO SWS	Negros and Panay	Aug 2023
Cebu-Negros- Panay 230kV Generation Entry ERC-approved Backbone Project - Stage 3 ERC-approved Phase 2 - remaining OHTL Backbone Project The effective transmission of excess power from Panay and Negros towards Cebu. Hence, there will be power curtailment. To ensure the effective transmission of excess power generation from Panay and	 Magdugo 230 kV SS: 3x300 MVA 230/138-13.8 kV Power Transformer, 2x70 MVAR 230 kV Shunt Reactors, 15-230 kV PCB, 15-138 kV PCB Calatrava 230 kV SS: 2x100 MVA 230/69-13.8 kV Power Transformer, 2x70 MVAR 230kV Shunt Reactor, 12-230 kV PCB, 14-69 kV PCB Cadiz 230 kV SS: 2x150 MVA 230/138-13.8 kV Power Transformer, 10-230 kV PCB, 6- 138 kV PCB E. B. Magalona SWS: 1x70 MVAR 230 kV Line Reactor 9- 230 kV PCB Barotac Viejo 230 kV SS: 3x300 MVA 230/138-13.8 kV Power Transformer 1x70 MVAR 230 kV Line Reactor, 8-230 kV PCB, 6- 138 kV PCB Bacolod 230 kV SS: 2x300 MVA 230/138-13.8 kV Power Transformer, 6-230 kV PCB, 1- 138 kV PCB Colon 138 kV SS: 21-169 kV PCB Quiot 138 kV SS: Uprating of 4- 138 kV PCB Cebu 138 kV SS: Uprating of 6- 138 kV PCB Cebu 138 kV SS: Uprating of 6- 138 kV PCB Cebu 138 kV SS: Uprating of 6- 138 kV PCB Calatrava-Talavera 230 kV Subma 29 km 		31,597M	Cebu, Negros, and Panay	Aug 2023

1 Se

TRANSMISSION LINE	Project Components		
Project Name and Project Driver Description and Status		Project Cost smission Line (Million Pesos)	Location ETC
submarine cable interconnections, and corresponding new SS facilities.			
	PANAY ISLAND NEG	GROS ISLAND	CEBU ISLAND
Cebu-Bohol 230 kV • Load Growth Interconnection • ERC-approved Project	 MVAR 230 kV line reactors, 2- 230 kV PCB Corella 230 kV SS: 2x300 MVA, 230/138-13.8 kV Power Transformers, 2x70 MVAR 230 kV line reactors, 8-230 kV PCB, 5-138 kV PCB Argao CTS (with provision Maribojoc CTS (with provision 	g-Argao TL: 230 kV, 16,972M 795 MCM ACSR, 29 c-Corella TL: 230 kV, -795 MCM ACSR, 26	Cebu Jun 2024 Bohol
Currently, Cebu, Leyte, and Bohol are onnected radially which are prone to solation. By 2021, even when all the diesel ower plants in Bohol are dispatched at ull capacity, the Leyte–Bohol 138 kV ubmarine cable will be overloaded which ould result in load curtailment in the said	to be SWS) Submarine Cable • Argao-Maribojoc 230 kV S/C, DC submarine transfer capacity of 600 MW at 230 kV, 30 km. (r circuit)		
sland. With the outage of the Leyte-Bohol L38 kV Interconnection, power delivery	ARGAO CTS		
iowards the entire Bohol Island will be nterrupted. Since the existing power olants in Bohol do not have sufficient generation capacity to cater the power demand in the island during N-1 contingency conditions, there is a need to provide additional transmission backbone owards Bohol.	29 km	30 km 220 kV S/C) 26 km	CORELLA S/S
The project involves laying of DC 230 kV submarine cable with 600 MW capacity per circuit with provision for the 3rd circuit petween Cebu and Bohol, construction of 230 kV DC overhead TL, development of a 230 kV switchyard in the existing Corella 55 and the expansion of the proposed Dumanjug 230 kV SS under the Mindanao- /isayas Interconnection Project (MVIP).		$\underline{\vee}$	2x300 MVA
	• Lapu-lapu 138 kV S/S, 1-138 kV • Cebu–Um	apad 230 kV TL: 2,845M	Cebu Apr 2024

Page | 99

UX

X

TRANSMISSION LINE					
Project Name and Project Driver Description and Status	Project Cor Substation	nponents Transmission Line	Project Cost (Million Pesos)	Location	ETC
The existing transmission corridors serving the major load centers in Mandaue and Mactan in Cebu do not have N-1 contingency provisions. During the outage of one of the two 138 kV circuits of the Cebu–Mandaue–Lapu-Lapu Transmission Corridor, the remaining circuit will be overloaded, therefore, to prevent damage to the equipment, power will be curtailed. To maintain the continuous transmission of power towards the major load centers in Mandaue and Mactan even during N-1 condition, a new transmission corridor, composed of overhead TL and submarine/underground cable system, is proposed between Cebu SS and Lapu-Lapu SS.	230 KV. 2-41 STACIR, T MAGDUGO CEBU Sa00 MV	.9 m			
138 kV PROJECTS Permanent • System Restoration of Reliability Colon-Samboan • Filed to ERC 138kV Lines 1 and 2 2 affected by Landslide Project The fatal landslide that struck Brgy. Tina- an, City of Naga, Cebu on 20 September 2018 was a result of a natural phenomenon and man-made actions. The portion of mountainous areas of the Tina-an, City of Naga, Cebu, where located the Colon- Samboan 138 kV Lines 1 and 2 are within		 Colon-Samboan Line 1, 1-795 MCM ACSR, 138 kV, ST-DC1, 8km, 26 rerouted towers, 8 km Colon-Samboan Line 2, 1-795 MCM ACSR, 138 kV, ST-DC1, 8km, 21 rerouted towers, 8 km Colon-Samboan Lines 1 and 2 (Common Tower), 138 kV, ST- DC, 3 rerouted towers. 	328M (50 Structures Relocated	Colon, Cebu	Sep 2023
the declared danger zone of Mines and Geosciences Bureau (MGB) of the Department of Environmental and Natural Resources (DENR) hindering maintenance and construction activities in the affected TL. Moreover, in the event of the recurrence of landslide and ground movements, the toppling of the structures will affect the stability of the grid.		SAMBOAN S/S		COLON S/S	
The project includes the rerouting of the portion of Colon-Samboan 138 kV Line 1 and 2 affected by the landslide. This will avoid the 1 km danger zone declared by MCP.					

Restoration of
Toppled Towers
Affected by
Typhoon Odette
and Agaton

MGB.

A system reliability project that aims to permanently restore the portion of the 138 kV transmission lines that was damaged during the devastation of Typhoon Odette on December 2021 and Typhoon Agaton last April 2022.

• System

Reliability

• Filed to ERC

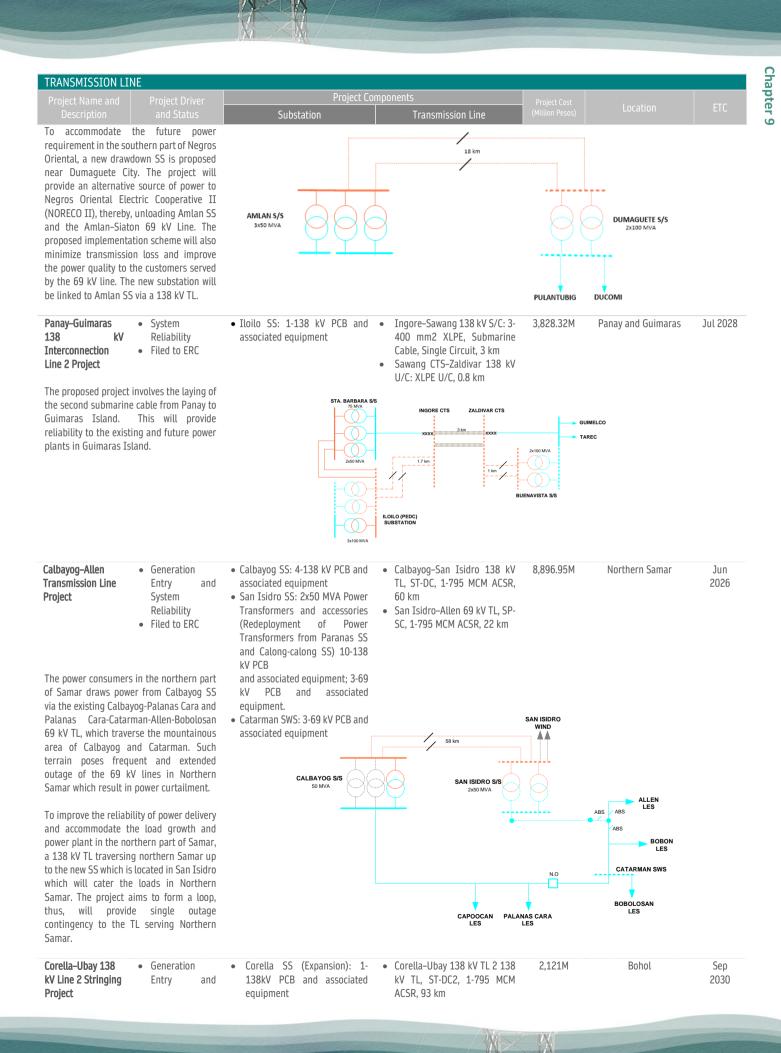
- Four (4) towers for Cebu-Colon 138 kV TL
 Four (4) towers for Calong-Calong-Colon 138 kV TL
 Two (2) towers for Ubay-Two (2) towers for Ubay-
- Corella 138 kV TL • Two (2) special towers and one (1) tower for C.P. Garcia–Ubay 138 kV TL
- Three (3) towers for Ormoc-Maasin 138 kV TL.

						0
TRANSMISSION LINE	Durationst Co	maananta				hap
Project Name and Project Driver Description and Status	Project Co Substation	mponents Transmission Line	Project Cost (Million Pesos)	Location	ETC	Chapter 9
The affected transmission lines are the Cebu-Colon 138 kV T/L, Calong-Calong- Colon 138 kV TL, C.P. Garcia-Ubay 138 kV TL and Ubay-Corella 138 kV TL. Tower structures were toppled during the occurrence of Typhoon Odette last December 2021. The said transmission lines served the customers in Cebu and Bohol Provinces. The damage parts of C.P. Garcia-Ubay 138 kV TL are special towers and serves as connection of Bohol Island to the Visayas grid through Leyte. The Typhoon Agaton damages the Ormoc- Maasin 138 kV TL when it landed on Leyte Island last April 2022						
Visayas 69 kV • System Transmission Line Reliability Upgrading Project • Filed to ERC This aims to avoid overloading of the 69 kV lines in Visayas while awaiting the completion of the needed transmission projects. These foreseen overloading of 69 kV lines are primarily due to the load growth within the specified areas. As the demand grows, overloading in the 69 kV lines will worsen which may lead to load curtailment.		 Reconductoring of Ormoc- Lemon 69 kV Line portion_1- 795 MCM ACSR, 20 km Reconductoring of Ormoc- Simangan 69 kV Line portion, 1-795 MCM ACSR, 6 km Reconductoring of Babatngon-Abucay 69 kV Line portion_1-795 MCM ACSR, 16 Reconductoring of Corella- Tagbilaran 69 kV Line portion, 1-795 MCM ACSR, 6 km Reconductoring of Sta. Barbara-Bolong portion 69 kV Line_1-795 MCM ACSR, 6 km 	2,820 M	Leyte, Bohol and Panay	Dec 2025	
Panay-GuimarasFiled to ERC138 kVGenerationInterconnectionEntryProjectFrojectThe development of new power plants in Guimaras Island will result in increased power transmission towards Panay. Currently, the existing submarine cable interconnection between Panay and Guimaras is only energized at 69 kV and has limited capacity to accommodate the transmission of excess power from Guimaras.To ensure the full dispatch of the San Lorenzo Wind Plant and other prospective generators in the area, it is proposed to energize the Panay-Guimaras Interconnection at 138 kV. The project will also involve the construction of a 1.7 km overhead TL from the cable terminal station in Ingore towards Iloilo SS, as well as the expansion and upgrading works at Zaldivar SS and Iloilo SS.	 Iloilo SS: 3x100 MVA,138/69- 13.8 kV Power Transformers, 2- 138 kV PCB, 10-69 kV PCB (GIS) Buenavista 138 kV SS: 1x100 MVA 138/69-13.8 kV Power Transformer, 6-138 kV PCB (GIS), 4-69 kV PCB Transfer of existing 1x100 MVA 138/69-13.8 kV Power Transformer from Iloilo SS to Buenavista SS 	 Iloilo SS-Ingore CTS 138 kV TL Portion: ST-DC, 1-795 MCM ACSR, 1.7 km Iloilo SS-Ingore CTS 138 kV U/G Portion: SC, XLPE cables of 200 MW capacity per circuit, 0.15 km. Iloilo 69 kV U/C: Four circuits, XLPE cables of 100 MW capacity per circuit, 0.25 km Extension of Sta. Barbara- Iloilo 138 kV Line: DC, XLPE cables of 400 MW capacity per circuit, 0.15 km Baldoza 69 kV Line Transfer TL Portion: SP-SC, 1-795 MCM ACSR, 0.07 km Baldoza 69 kV Line Transfer U/G portion: SC, XLPE cable of 100 MW capacity per circuit, 0.38 km PPC & MORE 69 kV Line Transfer TL Portion: SP-SC, 1- 795 MCM ACSR, 0.09 km PPC & MORE 69 kV Line Transfer U/G portion: SC, XLPE cable of 100 MW capacity per circuit, 0.37 km Banuyao 69 kV Line Transfer TL Portion: SP-SC, 1-795 MCM ACSR, 0.8 km 	3,011M	Panay and Guimaras	Dec 2024	

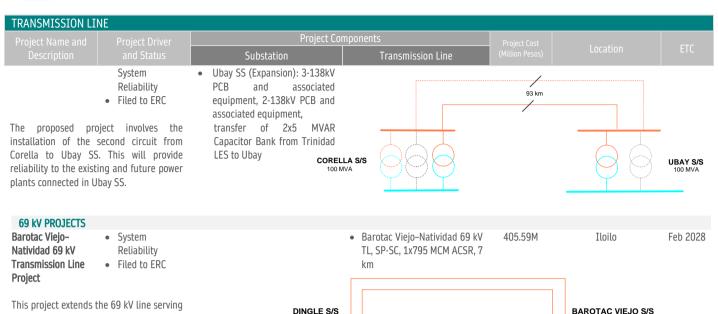
0X

TRANSMISSION LINE		Project Co	moonents			
Project Name and Description	Project Driver and Status	Substation	Transmission Line		Location	ETC
STA. BARBABA 5/S 75 MVA 2,550 MVA 2,550 MVA LOILO (PEDC) SUBSTATION 3,100 MVA	INGORE CTS ZALDIVAR CT XXXXX 3km XXXXX 7km 1km	S GUIMELCO TAREC	 Banuyao 69 kV Line Transfer U/G portion: SC, XLPE cable of 100 MW capacity per circuit, 0.36 km Buenavista 138 kV U/C two circuits of 200 MW-capacity, 0.15 km Zaldivar CTS-Buenavista SS 138 kV TL: ST-DC, 1-795 MCM ACSR, 1 km Zaldivar Bypass Line: 69 kV TL, ST-SC, 1-336.4 MCM ACSR, 0.7 km. 			
	 Filed to ERC relopments in the oracay Island, the spected to increase. nt of Caticlan and rently supplied by gle circuit 69 kV 	 Boracay 138 kV GIS SS (New), 2x100 MVA 138/69-13.2 kV Power Transformers, 5-138 kV PCB (GIS), 6-69 kV PCB (GIS). Nabas 138 kV SS (Expansion), 4-138 kV PCB Nabas Transition Station. 	 Nabas-Unidos 230 kV TL (Initially energized at 138 kV), 230 kV, ST/SP-DC, 4-795 MCM ACSR, 15.7 km. Unidos-Caticlan 138 kV TL, ST/SP-DC, 138 kV, 1-795 MCM ACSR, 1.9 km Unidos-Caticlan 138 kV U/G, DC, 138 kV Underground Cable System of 180 MW capacity per circuit, 4.5 km. Manocmanoc-Boracay Tie Line, 69 kV, SP-SC, 1-336.4 MCM ACSR, 0.375 km 	5,274M	Aklan	Jun 2024
69 kV transmission enough to cater the for the island. The project involves th new submarine cable,	facilities are not ecasted demand of e construction of a	Submar • Caticlan-Boracay S/C, Submarin capacity at 138 kV, 2 km • Caticlan CTS (New), Cable Sealing				
and overhead transm Nabas to Boracay and th new drawdown subst Island.	ne construction of a	BORACAY ISLAND	CATICLAN CTS MAINLAND 18m 4.5 km (138 kV U/C) (138 kV Designed T/L) AVON-NABAS	PANAY 15.5 Min (200 W Designed) ANTECO AKELCO	5	

km.

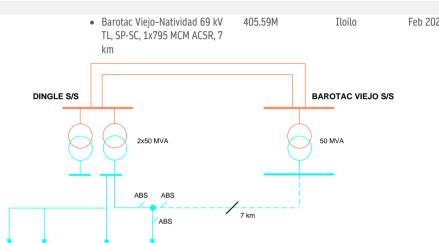

Amlan-Dumaguete Load Growth 138 kV • Filed to ERC Transmission Line Project

The power requirement in the southern part of Negros Oriental is being served by a 69 kV line which draws power from Amlan SS. However, the 69 kV line will not be sufficient to cater the projected increase in the power demand in the area.


- Amlan 138 kV SS: 3-138 kV PCB.
- Dumaguete 138 kV SS (New): 2x100 MVA, 138/69-13.8 kV Power Transformer 6-138 kV PCB, 6-69 kV PCB.
- Amlan-Dumaguete 138 kV TL: 2,366M ST-DC, 1-795 MCM ACSR, 18

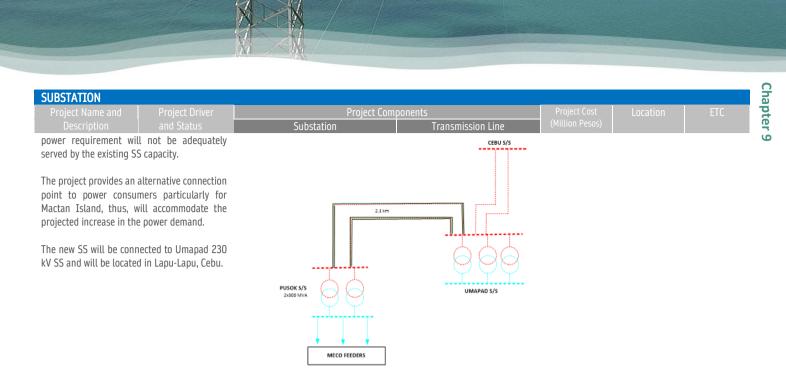
Negros Occidental

Mar 2025



Page | 103

Natividad to Barotac Viejo and forms a 69 kV loop between Dingle and Barotac Viejo substations. This provides N-1 to the 69 kV feeder serving Iloilo II Electric Cooperative (ILECO II) and Iloilo III Electric Cooperative (ILECO III) and allows for the operational flexibility and reliability for both cooperatives.


developments within the area, the projected

JANIUAY POTOTAN DUMANGAS NATIVIDAD

SUBSTATION					
Project Name and	Project Driver	Project Components	Project Cost	Location	
Description	and Status	Substation Transmission Line	e (Million Pesos)		
230 kV PROJECTS					
Visayas Substation Upgrading Project 1	 System Reliability Filed to ERC 	Cebu: • Daanbantayan SS: 150 MVA 230/69-13.8 kV Power Transformer, 1-230 kV PCB, 4-69 kV PCB.	1,317M	Cebu, Leyte, Samar	Dec 2023
avoid overloading of th a need to upgrade the SS to 1x50 MVA. Thi provision on the said S	projected demand and transformer, there is SS capacity of Tabango s will provide an N-1 S. crease in demand in the	Leyte: • Tabango SS: 1x50 MVA 230/69- 13.8 kV Power Transformer, 1-230 kV PCB, 3-69 kV PCB • Maasin SS: 1x50 MVA 138/69- 13.8 kV Power Transformer, 4-138 kV PCB, 8-69 kV PCB.			
	d to upgrade the SS	Samar: Calbayog SS: 50 MVA 138/69-13.8 kV Power Transformer, 1-138 kV			
of the PGC, an a	1 contingency criterion dditional 1x50 MVA be installed at Maasin	PCB, 2-69 kV PCB.			
Lapu-Lapu 230 kV Substation Project	Load GrowthFiled to ERC	 Pusok 230 kV GIS SS (New), 2x300 MVA 230/69-13.8 kV Power Transformers, 8-230 kV PCB (GIS), 10-69 kV PCB (GIS). 	3,935M	Lapu-Lapu, Cebu	Dec 2024
	actan Island currently I-Lapu 138 kV SS. With mic and infrastructure	Submarine Cable • Umapad-Pusok 230 kV S/C, 600 MW per circuit, DC, 2.1 km.			

Page | 104

 Visayas Substation
 • System Reliability
 Leyte:

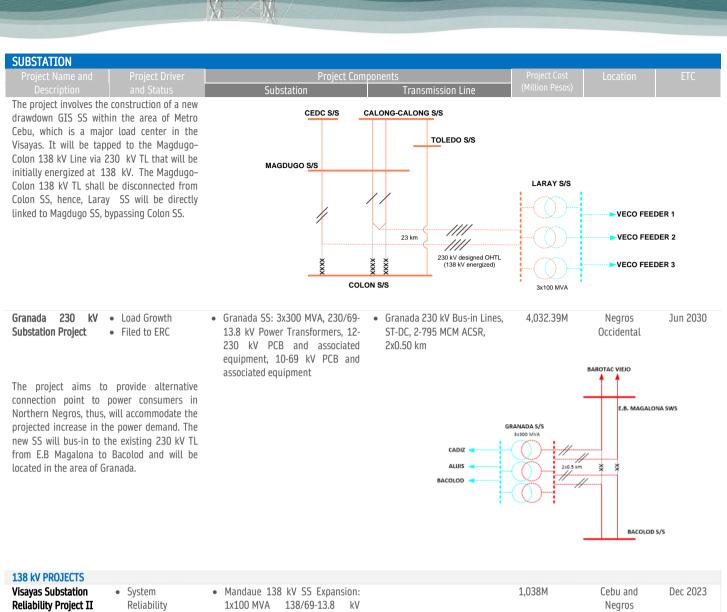
 Upgrading Project 2
 • Filed to ERC
 • Isabel SS: 1x50 MVA 138/69-13.8

The project involves the upgrading of 20 Substations in the Visayas by installing an additional 850 MVA transformer capacity and replacing the existing transformers with a total of 1,600 MVA higher capacity transformers to cater the load growth in the area and to provide N-1 contingency to the Substations. Replaced transformers will be either redeployed to other Substations or

refurbished.

- Isabel SS: 1x50 MVA 138/69-13.8 kV Power Transformer (1x50 MVA transformer transferred from Calong-calong SS), 3-138 kV PCB, 2-69 kV PCB. (Additional), 9-138 kV PCB, 2-69 kV PCB. (Replacement), Centralized Control Building (CCB), Full upgrading of secondary devices.
- Tabango SS: 1x50 MVA 230/69-13.8 kV Power Transformer, 2-230 kV PCB, 2-69 kV PCB, CCB, Full upgrading of secondary devices.
- Maasin SS: 1x50 MVA 138/69-13.8 kV Power Transformer, 3-138 kV PCB, 9-69 kV PCB, Expansion of Control Room.
- Samar:
- Paranas SS: 2x100 MVA 138/69-13.8 kV Power Transformer (Replacement of 30 MVA and 50 MVA transformers), 9-69 kV PCB, CCB, Full upgrading of secondary devices
- Calbayog SS, 1x50 MVA 138/69-13.8 kV Power Transformer, 5-138 kV PCB, 7-69 kV PCB, Full upgrading of secondary devices, CCB.
- Cebu:
- Calong-calong SS, 3x100 MVA 138/69-13.8 kV Power Transformer (Replacement of 2x50 MVA transformers), 2-138 kV PCB, 13-69 kV PCB, Full upgrading of secondary devices, CCB, Dismantling of existing 69 kV Switchyard, and Calong-calong 69 kV feeder line extensions
- Compostela SS: 2x100 MVA 138/69-13.8 kV Power Transformer (Replacement of 2x50 MVA transformers), 2-230

14,421M Cebu, Negros, Panay, Leyte


Dec 2025

Contraction of the second		M				
						0
SUBSTATION						ha
Project Name and	Project Driver	Project Com	ponents	Project Cost	Location	pt
Description	and Status	Substation	Transmission Line	(Million Pesos)		er
Project Name and				Project Cost (Million Pesos)		Chapter 9
		13.8 kV Power Transformer (50				
		MVA Transformer transferred				

SUBSTATION					
Project Name and Project Driver Description and Status	Project Com Substation from Iloilo SS), 2-138 kV PCB, 2- 69 kV PCB, Sta. Barbara SS: 1x75 MVA 138/69-13.8 kV Power Transformer (Spare), Upgrading of Secondary Equipment. Cable	ponents Transmission Line	Project Cost (Million Pesos)	Location	ETC
Visayas Substation Upgrading Project 3 • Load Growth, Generation Entry, System Reliability • Filed to ERC The proposed project involves the upgrading of the Colon and Cadiz SS to increase the SS capacity due to the forecasted load growth and to sustain the N-1 contingency provision prescribed by the PGC. This project also involves the expansion of various substations in Visayas to accommodate the entry of powerplants.	 Cadiz SS (expansion) 2x100 MVA 138/69-13.8 kV Power Transformers and accessories 10- 69 kV PCB and associated equipment. E.B. Magalona 230 kV SS (expansion) 2-230 kV PCB and associated equipment Sta. Barbara 138 kV SS (expansion) 2-138 kV PCB and associated equipment Naga 138 kV SS (expansion) 2-138 kV PCB and associated equipment Colon 138 kV SS (expansion): 2x100 MVA 138/69-13.8 kV Power Transformers and accessories 1- 138 kV PCB and associated equipment 2-69 kV PCB and associated equipment. Calbayog 69 kV SS (expansion): 1- 69 kV PCB and associated equipment 		4,516.55M	Samar, Cebu, Negros, Panay	Oct 2027
Babatngon-Palo 230 kV Tranmission Line Project (Initially energized at 138 kV)Load System Reliability Filed to ERC	 Palo SS: 3x100 MVA Power Transformers and accessories; 8- 230 kV PCB and associated equipment; 9-69 kV PCB and associated equipment. Babatngon SS: 3-138 kV PCB and associated equipment 	 Babatngon-Palo 230 kV TL, ST-DC, 4x795 MCM ACSR, 20 km Palo-Alang-Alang 69 kV TL, SP-DC, 1-795 MCM ACSR, 0.5 km Palo-Tolosa & Palo-Campetik 69 kV TL, SP-DC, 1-795 MCM ACSR, 2x0.75 km 	6,002.30M	Leyte	Dec 2030
The project is proposed to improve the quality of power and enhance the reliability of the transmission backbone in Leyte, it is proposed to construct a transmission corridor along the eastern part of Leyte.		230 kV designed OHTL (138 kV energized)			
The project involves the construction of a new drawdown SS in Palo which will be linked to Babatngon SS via 230 kV designed TL energized at 138 kV. The proposed SS will serve Don Orestes Romualdez Electric Cooperative, Inc. (DORELCO) and Leyte Electric Cooperative II (LEYECO II) and provide alternate power supply source during N-1 contingency event. The project will form part of the planned 230 kV transmission loop in Leyte, complementary to the proposed Ormoc-Babatngon and Palo-Javier 230 kV TL.	BABATNGON S/S 3x50 MVA	36		PALO S/S 3x100 MVA	
Laray230kV•LoadGrowth,Substation Project (Initially energized at 138 kV)•Filed to ERC	 Laray GIS SS (New) 3x100 MVA 138/69-13.8 kV Power Transformers and accessories, 10- 230 kV PCB (GIS) and associated equipment, 7-69 kV PCB GIS and associated equipment 	 OHTL from Laray to Tapping Point along Magdugo-Colon 138 kV Lines (in the area of Naga), ST/SP-DC, 2-610 mm2 TACSR, 4-795 MCM ACSR, 23 km 	6,410.18M	Cebu	Nov 2028

0X

X

- ReliabilityERC-approved
- Manualle 138 kV 35 Expansion:1x100 MVA138/69-13.8 kVPower Transformer, 1-138 kV GISSwitch Bay,1-69 kV GISSwitch Bay
- Lapu-Lapu 138 kV SS Expansion: 1x100 MVA 138/69-13.8 kV Power Transformer, 1-138 kV GIS Switch Bay, 1-69 kV GIS Switch Bay
- Ormoc SS: 1-100 MVA 138/69-13.8 kV Power Transformer, 3-69 kV PCB and associated equipment
- Sta. Barbara SS: 2-50 MVA 138/69-13.8 kV Power Transformer, 2-138 kV and 5-69 kV PCB and associated equipment
- Sta. Rita SS: 1-50 MVA 138/69 kV-13.8 Power Transformer (transferred from Ormoc S/S), 2-69 kV PCB (transferred from Babatngon and Ormoc SS) and 1-69 kV Air Break Switch (transferred from Bagolibas SS)
- Babatngon SS: 1-50 MVA 138/69-13.8 kV Power Transformer, 1-138 kV and 1-69 kV PCB and associated equipment

Page | 108

SUBSTATION						
Project Name and	Project Driver	Project Com		Project Cost	Location	ETC
Description Tigbauan 138 kV Substation Project Power consumers in power from Sta. Barban the continuing econo developments within a power requirement w served by the existing The project aims to connection point to particularly for South accommodate the pro- power demand.	and Status Load Growth Filed to ERC Southern Panay draws ra and San Jose SS. With mic and infrastructure the area, the projected vill not be adequately	Project Com Substation Stage 2 • Tigbauan 138 kV SS: 2x100 MVA 138/69-13.8 kV Power Transformer, 10-138 kV PCB, and 4-69 kV PCB • Sta. Barbara SS: 1-138 kV PCB, and 2-69 kV PCB • San Jose SS: 2-138 kV PCB.	 ponents Transmission Line Stage 1 Portion of the Stringing of Sta. Barbara-San Jose 138 kV Line 2, ST-DC2, 1-795 MCM ACSR, 93 km. (energized at 69 kV) Stage 2 Tigbauan 138 kV Bus-in Line, ST-DC, 1-795 MCM ACSR, 2x0.50 km. Tigbauan 69 kV Cut-in Line, SP-DC, 1-795 MCM ACSR, 0.5 km. Sta. Barbara 69 kV Tie Line, SP-SC, 1-795 MCM ACSR, 0.4km. Stringing of Sta. Barbara-San Jose 138 kV Line 2, ST-DC2, 1-795 MCM ACSR, 93 km. 	TIGBAUAN S/S	iloilo	ETC Stage 1 - Dec 2023 Stage 2- Sep 2030
commissioned in 1977 and is difficult to main to equipment failure, r works are expected to and at a longer durat outages may result in To improve the reliabil shall be replaced. Th construction of new ste the installation of as components. It also in tower structures with	ity of the SS, equipment ne project involves the eel tower structures and sociated overhead line nvolves the use of steel h higher wind design was formerly named as	 Naga 138 kV SS, 6-138 kV PCB, Construction of New Control Room Dismantling of Primary and Secondary Equipment at Naga SS 		477M	Naga	Jun 2023
existing PCB in various due to the following: Underrated capacity and/or continuous cu	, ,	 Cebu SS: 1-69kV, PCB, 8-138 kV PCB and associated equipment. Pajo LES, 1-69 kV PCB and associated equipment Garcia Hernandez LES, 1-69 kV PCB and associated equipment Bacolod SS: 6-69 kV PCB, 1-138 kV PCB and associated equipment Amlan SS: 3-69 kV PCB and associated equipment Sta. Barbara SS: 1-69 kV PCB and associated equipment 		2,645.13M	Cebu, Bohol, Negros, Panay	Dec 2026

NO.

circuit breaker.

Page | 109

SUBSTATION	Draiast Como	a manufa	Project Cost	Location	FTC
Project Name and Project Driver Description and Status	Project Compo Substation	Transmission Line		Location	ETC
Old age - These PCB are more or less 40 years	Jubstation				
Id in the service, hence they are becoming					
ess and less reliable every passing year.					
Although these PCB can still operate, the					
reliability of the system is endangered due to					
heir unpredictable operation. These PCB are bound to fail to operate that will result in					
widespread system disturbance which should					
pe avoided.					
59 kV PROJECTS					
Fagbilaran 69 kV • System Reliability	• Tagbilaran 69 kV SS (New), 1x10		410M	Bohol	Sept
Substation Project • ERC-approved	MVA 69/13.8 kV power		41014	Donot	2023
	transformer and 3-69 kV PCB.				
	Construction of New Control Room.				
This project involves the installation of a 10					
MVA transformer for Tagbilaran SS that will allow a continuous reliable supply of power for		BDPP1	لے	ВС	PP2
Bohol Electric Incorporated (BEI) and for the			10 MVA	GG	
Sta. Clara Power Corp. (SCPC). Presently, these		5.5MW 5.5MW	Т	5.5MW 5.5MW	
customers are just relying on the 2x10 MVA					
ransformers at Bohol DPP Switchyard, thus,			<u></u>		
any outage or maintenance works in the BDPP- owned transformers, the grid connection of		10 MVA	X		
BEI and SCPC is being disrupted. With the					
project, BEI and SCPC will have a dedicated					
connection to Tagbilaran SS, and the			BEI		
expansion of SCPC's Hydro Electric Power		3x0.4MW Add SCPC 1.2	itional		
Plant will be catered.					
VOLTAGE IMPROVEMENT			During Cost		FTO
Project Name and Project Driver Description and Status	Project Comp Substation	onents Transmission Line	Project Cost (Million Pesos)	Location	ETC
138 KV PROJECTS	Substation		(**************************************		
/isayas Voltage • Power Quality	Stage 1		711M	Cebu, Bohol,	Dec
mprovement Project • ERC-approved	• Compostela 138 kV SS, 2x20			Leyte, and	2023
	MVAR, 138 kV Capacitor, 2-138 kV			Samar	
	PCB,				
/arious areas in Samar and Leyte are	• Cebu 138 kV SS, 2x20 MVAR, 138				
experiencing low voltage occurrences due to ong 69 kV TL. Likewise, areas in Cebu and	 kV Capacitor, 2-138 kV PCB, Corella 69 kV SS, 3x5 MVAR, 69 				
Bohol are also experiencing low voltage	kV Capacitor, 3-69 kV PCB.				
occurrences due to high concentrations of					
oad. These low voltages may result in power	• Himayangan LES, 1x5 MVAR, 69				
urtailment.	kV Capacitor, 1-69 kV PCB,				
	Bobolosan LES, 1x5 MVAR, 69 kV Gasasitar 1.60 kV DCP				
To address the low voltage problems in these areas, Capacitor are proposed to be	Capacitor, 1-69 kV PCB, • Tolosa LES, 1-5 MVAR, 69 kV				
trategically installed at identified substations	• Totosa LES, 1-5 MVAR, 69 KV Capacitor, 1-69 kV PCB.				
and load-ends.					
/isayas Voltage • Power Quality	Stage 1:		8,713M	Samar,	Stage 1-
mprovement Project • Filed to ERC	 Calbayog 138 kV SS: ±20 MVAR 138 kV STATCOM, 2-138 kV PCB 			Leyte, Cebu, Negros,	Dec 2025
-	 Naga 138 kV SIATCOM, 2-138 kV PCB Naga 138 kV SS: ±40 MVAR 138 			Panay	2023
				runuy	
	kV STATCOM, 2x20 MVAR				
	5				
	kV STATCOM, 2x20 MVAR Capacitor, 4-138 kV PCB • Panitan 138 kV SS: ±20 MVAR 138				Stage 2-
Various areas in Visayas are experiencing low voltage occurrences due to long 69 kV	 kV STATCOM, 2x20 MVAR Capacitor, 4-138 kV PCB Panitan 138 kV SS: ±20 MVAR 138 kV STATCOM, 1-138 kV PCB 				Stage 2- Dec
	 kV STATCOM, 2x20 MVAR Capacitor, 4-138 kV PCB Panitan 138 kV SS: ±20 MVAR 138 kV STATCOM, 1-138 kV PCB 				0

kV STATCOM, 1-138 kV PCB Baybay 69 kV LES: 2x5 MVAR 69 kV Capacitor Bank, 2-69 kV PCB

load. These low voltages, if not addressed, will result in load curtailment.	Sipalay 69 kV LES: 2x5 MVAR 69 kV Capacitor Bank, 2-69 kV PCB • San Jose 69 kV LES: 3x5 MVAR 69			
Currently, there are no power plants in Samar Island to provide the needed voltage regulation in the area. Overvoltage is	 Sall Jose 69 kV LES: 3x5 MVAR 69 kV Capacitor Bank, 3-69 kV PCB Roxas 69 kV LES: 2x5 MVAR 69 kV Capacitor Bank, 2-69 kV PCB 			
experienced during off-peak demand while undervoltage during peak demand.	Stage 2: • Quinapondan 69 kV LES: 5 MVAR			
With the increase in demand in the area of Naga and Panitan SS, undervoltage is	69 kV Capacitor Bank, 1-69 kV PCB • Balamban 69 kV LES: 2x5 MVAR			
experienced in the area. Additionally, stability issues are experienced in the area. There is no more headroom for the reactive power support	69 kV Capacitor Bank, 2-69 kV PCB • Carmen 69 kV LES: 2x5 MVAR 69 kV Capacitor Bank, 2-69 kV PCB			
during heavy fault, thus, may cause multiple tripping of power plants and may lead to	Valladolid 69 kV LES: 5x5 MVAR 69 kV Capacitor Bank, 5-69 kV PCB			
instability of the system.	Bayawan 69 kV LES: 1x5 MVAR 69 kV Capacitor Bank, 1-69 kV PCB			
	 Estancia 69 kV LES: 2x5 MVAR 69 kV Capacitor Bank, 2-69 kV PCB 			
Visayas Mobile • Power Quality Capacitor Project • Filed to ERC	 Dauin 69 kV LES: 3x5 MVAR 69 kV Mobile Capacitor, 3-69 kV PCB. Tiobauan 69 kV LES: 1x5 MVAR 69 	1,165M	Panay, Negros and Leyte	Jun 2024
	 KV Mobile Capacitor, 1-69 kV PCB. Biliran 69 kV LES: 2x5 MVAR Mobile Capacitor, 2-69 kV PCB. 		LEyle	

9.2 Transmission Outlook for 2031-2040

By 2035, with the implementation of projects that will strengthen the Visayas Backbone, future developments in terms of the commercial and industrial sector in the Visayas that would increase the power supply requirements are being expected. To accommodate these developments, new drawdown substations are proposed in the key cities across the Visayas grid.

Furthermore, with the projected entry of large power plants in Panay, Samar, and Leyte Island, the main backbone will be extended towards Northern Panay and Leyte Island. The interconnection of the 230 kV Backbone from Panay to Leyte will be unified by linking the CNP 230 kV Backbone to the Cebu–Ormoc 230 kV Line. This will be realized upon completion of the Talisay–Bonbon 230 kV TL under Cebu–Leyte 230 kV Interconnection Line 3 and 4 Project. As more powerplants are expected to come to Panay, major reinforcements of the 230 kV lines also need to be constructed. The HVDC system between Luzon and Visayas will be upgraded to double its transfer capacity in sharing excess generation among Luzon, Visayas and Mindanao grids.

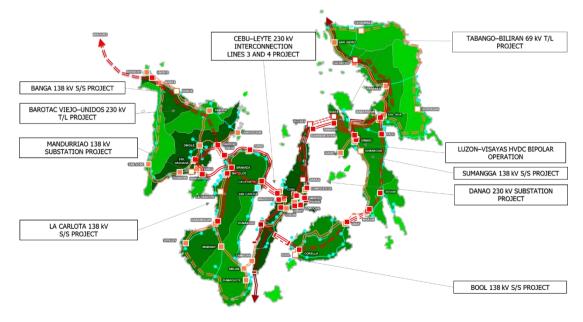
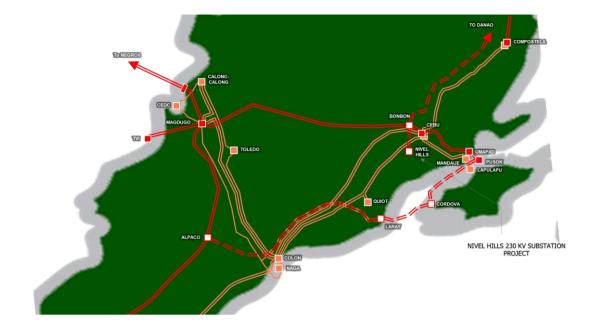
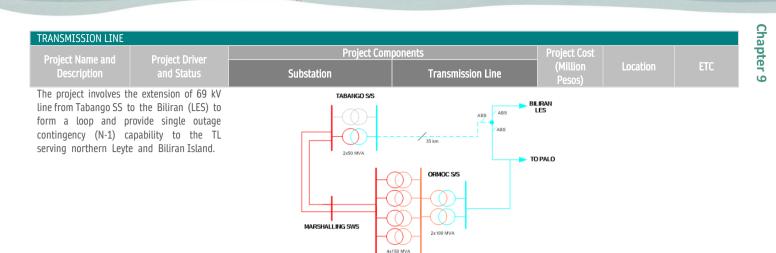



Figure 9.3: Visayas Transmission Outlook for 2031-2040

Figure 9.4: Metro Cebu Transmission Outlook 2031-2040

Table: 9.2 List of Committed Visayas transmission projects for the period 2031-2040.

Project Name and Project Driver	Project Compo	onents	Project Cost		
Description and Status	Substation	Transmission Line	(Million Pesos)	Location	ETC
Descriptionand Status500 kVLuzon-Visayas HVDC Bipolar Operation Project• Generation Entry • Filed to ERC• Naga 	Converter Station (Expansion) 2 MVA single phase converter formers; 1300A – 576 stor, 96 Modules, 3 ruples at 172.1kV thyristor valves; ters 1x78MVAR AC high pass 240mH smoothing reactor; c Converter Station nsion) 3x172 MVA single e converter transformers; A – 576 Thyristor, 96 Modules, iadruples rated at 172.1kV tor valves; AC filters 4VAR filter banks; 240mH thing reactor; SS (Expansion) 2x1000 MVA	Transmission Line		Location Naga and Leyte	Dec 2032


completion of the project. It aims to accommodate additional excess generation, import and export to the Visayas Grid and vice

versa.

TRANSMISSION LINE		Project Com	nonents	Project Cost		
Project Name and Description	Project Driver and Status	Substation	Transmission Line	(Million Pesos)	Location	ETC
230 kV PROJECTS Barotac Viejo-Unidos 230 kV Transmission Line Project	 Generation Entry Filed to ERC 	 Unidos GIS SS (New): 2x300 MVA 230/138-13.8 kV Power Transformers and accessories; 7- 230 kV PCB (GIS) and associated equipment; 6-138 kV PCB (GIS) and associated equipment Barotac Viejo SS (Expansion): 4- 230 kV PCB and associated equipment 	 Bus-in of Unidos SS to Nabas-Caticlan TL (Going to Caticlan): 138 kV TL, ST-DC, 1-795 MCM ACSR, 1 km Bus-in of Unidos SS to Nabas-Caticlan TL (Going to Nabas): 230 kV TL, ST-DC, 4-795 MCM ACSR, 1 km. 	16,259.97M	Panay	May 2033
The project involves the drawdown SS in Unido MVA 230/138-13.8kV t will bus-in along the pro TL which is under the N Transmission Project. T kV designed transmissi will be disconnected going to Barotac Viejo Unidos SS to Barotac will accommodate the i in Northern Panay.	s, Aklan with a 2x300 ransformer capacity. It oposed Nabas-Caticlan abas-Caticlan-Boracay fermination of the 230 ion line from Nabas SS and will be extended o SS thus, connecting c Viejo SS. The project			SPDC (200 MV) 1 km 1 km 1 km TCW (75 MV)	2±50 MV/A NABAS S/S	H40 km H40 km BAROTAC VIE S1500 MV
Cebu-Leyte 230 kV Interconnection Lines 3 and 4 Project	and System Reliability • Filed to ERC	 Talisay SWS (New): 14-230 kV PCB and associated equipment; 4x70 MVAR Line Reactors Tugas SWS (New): 14-230 kV PCB and Associated equipment; 4x70 MVAR Line Reactors Bonbon 230 kV SS (Expansion): 2-230 kV PCB and associated equipment Ormoc 230 kV SS (Expansion): 4-230 kV PCB and associated equipment; Series Reactor along the existing Ormoc-Tabango 230 kV TL (per ckt) Tabango 230 kV SS (Expansion): 1-2000 kV SS (Ex		(75 MW) 44,405.71M	Leyte, Cebu	Dec 2031
transmission backbone center in Cebu toward hub in Leyte. The proj double-circuit submar Cebu and Leyte Islar involves construction of and switching stations 230 kV transmissior accommodate the ent Leyte, Samar, and Cebu power interchange bei and Mindanao.	s the bulk generation ject includes laying of rine cables between nds. The project also of 230 kV overhead TL is to complete the new n backbone. It will cry of powerplants in a and will maximize the	 230 kV PCB and associated equipment Daanbantayan 230 kV SS (Expansion): 1-230 kV PCB and associated equipment 	DARAG 5/5	2004 Submitted Cable, 23 2004 Submitted Cable, 23 NRANTAYAN 5/5 TABANGC 5/5 TABANGC 5/5 SUBS 5/5 SUBS	D S/S	wa
69 KV PROJECTS Tabango–Biliran 69 KV Transmission Line Project	 Load Growth and System Reliability Filed to ERC 	 Tabango SS: 1-69 kV PCB and associated equipment Biliran LES: 3-69 kV Air-Break 	• Tabango-Biliran 69 kV TL SP- SC, 1-795 MCM ACSR, 35 km	1,723.55M	Northern Leyte	Sep 2034

- kV Transmission Line Project
 - System Reliability

 Filed to ERC
- Biliran LES: 3-69 kV Air-Break Switch
- SC, 1-795 MCM ACSR, 35 km

SUBSTATION						
Project Name and	Project Driver	Project Com	iponents	Project Cost		
Description		Substation	Transmission Line		Location	ETC
230 kV PROJECTS Nivel Hills 230 kV Substation Project	 Load Growth and System Reliability Filed to ERC 	 Nivel Hills GIS SS (New): 3x300 MVA 230/69-13.8 kV Power Transformers and accessories; 6- 230 kV PCB (GIS) and associated equipment; 10-69 kV PCB (GIS) and associated equipment Bonbon SWS (New): 10-230 kV PCB 	 Nivel Hills SS-Bonbon SWS: 230 kV, 4-795 MCM ACSR, ST- DC, 5 km Bus-in of Bonbon SWS to Cebu- Magdugo OHTL 230 kV, 4-795 MCM ACSR, ST-DC, 2x0.5 km 	6,867.38M	////	Dec 2033
drawdown GIS SS with transformers within th which is a major load of will bus-in to Cebu-M 230 kV TL which is a length and will be	a 3x300 MVA 230/69 kV ne area of Metro Cebu, center in the Visayas. It lagdugo 230 kV TL via pproximately 5 km in connected through the ne located in the area of	• Bonoun SWS (New): 10-250 kV PCB (GIS) and associated equipment	NIVEL HIL 3.000			CEBU S/S
Danao 230 kV Substation Project	 Load Growth and System Reliability Filed to ERC 	• Danao 230 kV SS: 2x300 MVA, 230/69 kV Power Transformers and accessories; 10-230 kV PCB and associated equipment; 8-69 kV PCB and associated equipment	• Bus-in lines to the Compostela- Daanbantayan 230 kV TL, ST- DC, 4x795 MCM ACSR, 2x1 km	3,763.87M	Cebu Tugas	Aug 2032
drawdown SS in Danac 230/69 kV Power T Danao 230 kV SS wil SWS-Talisay SWS 230	utting up a new 230 kV b, Cebu with 2x300 MVA ransformers. The new l bus-in along Bonbon kV TL proposed under erconnection Lines 3&4				230.3 km 😤 Š	
				2x300 MVA		BOBON SWS
138 kV PROJECTS Sumangga 138 kV Substation Project	 Load Growth and System Reliability Filed to ERC 	 Sumangga 138 kV SS: 2x100 MVA Power Transformers and accessories; 10-138 kV PCB and 	138 kV TL, ST-DC, 1x795 MCM ACSR, 2x1.5 km	3,977.94M	Leyte	Dec 2033
	utting up a new 138 kV	associated equipment; 5-69 kV PCB and associated equipment • Ormoc 138 kV SS: 6-69 kV PCB and associated equipment	 Sumangga 69 kV Cut-in Lines, SP-DC, 1x795 MCM ACSR, 1 km FEEDER 1 	SUMANGGA S/S 2x100 MVA		ORMOC S/S
MVA 138/69 kV Power	c City, Leyte with 2x100 Transformers. The new vill bus-in along Ormoc-		2 FEEDER 2		2x1.5 km Š	×

MAASIN S/S

Project Name and	Project Driver	Project Com	ponents	Project Cost		
Description	and Status	Substation	Transmission Line	(Million Pesos)	Location	ETC
Bool 138 kV Substation Project	 Load Growth and System Reliability Filed to ERC 	 Bool 138 kV SS: 3x100 MVA Power Transformers and accessories; 8- 138 kV PCB and associated equipment; 9-69 kV PCB and associated equipment Corella SS: 2-138 kV PCB and associated equipment; 1-69 kV PCB 	 Corella-Bool138 kV TL, ST-DC, 1x795 MCM ACSR, 6 km Bool 69 kV Cut-in Lines, SP-DC, 1x795 MCM ACSR, 1 km 	4,046.69M	Bohol	Dec 2032
connection points particularly for South accommodate the pro power demand. The construction of the transmission line from construction of the SS	o provide alternative to power consumers hern Bohol, thus, will ojected increase in the project involves the a 138 kV overhead Corella to Bool and the in Bool with 3x100 MVA by BOHECO I and BLCI ciaries of the project.	and associated equipment CORELLA 2x100 MVA	s/s	TAGBILARAI		BOOL S/S 3x100 MVA
La Carlota 138 kV Substation Project	Load GrowthFiled to ERC	• La Carlota SS: 2x100 MVA, 138/69- 13.8 kV Power Transformers; 10- 138 kV PCB and associated eqpt; 4-69 kV PCB and associated eqpt.	 La Carlota 138 kV Bus-in Lines, ST-DC, 1-795 MCM ACSR, 2x0.50 km La Carlota 69 kV Cut-in Lines, SP-DC, 1-795 MCM ACSR, 1.5 km 	4,022.05M	Negros	Dec 2032
138 kV SS in La Carl with 2x100 MVA	e construction of a new ota, Negros Occidental 138/69 kV power modate the load growth		КАВ	X X	LA CARLOTA SA 2.20.5 km 2.2100 MVA	S MT. VIEW
power from Nabas and With the continu infrastructure develop the projected power r adequately served by t The project provides an point to power cons Northern Panay, thus, projected increase in	 Load Growth and System Reliability Filed to ERC Northern Panay draw some from Panitan SS. ing economic and ments within the area, equirement will not be the existing SS capacity. In alternative connection umers particularly for will accommodate the the power demand. The the Panitan-Nabas 138 ed in Banga, Aklan. 	 Banga 138 kV SS: 2x100 MVA Power Transformers and accessories; 10- 138 kV PCB and associated equipment; 5-69 kV PCB and associated equipment 	138 kV TL, ST-DC, 1x795 MCM ACSR, 2x1 km • Banga 69 kV Cut-in Lines, SP-	2,621.10M	Panay	Sep 2032
kV transmission back part of Panay. This incl	 Load Growth and System Reliability Filed to ERC ne extension of the 138 bone towards southern udes the construction a Iloilo City that will bus- ra-Iloilo 138 kV T/L. 	 Mandurriao 138kV SS: 3x100 MVA, 138/69-13.8 kV Power Transformer and accessories; 8-69 kV PCB and associated equipment; 11-138 kV PCB and associated equipment 	• Bus-in to the Sta. Barbara- Iloilo 138 kV TL, 1-610 mm2 TACSR, 2x1 km, ST-DC MA FEEDER 1	3,210.24M		Oct2034 arbara s/s

1

X

The entry of indicative power plants in the identified CREZ areas in Panay, Negros, Samar, and Bohol Island will require extending the main backbone towards Southern Panay, Negros Occidental, Bohol, and Samar Island. Reinforcements of the 230 kV backbone lines are also proposed to accommodate the entry of these indicative power plants. Upgrading of the existing substations and construction of 138 kV transmission lines are also needed to provide power quality, reliability and resiliency.

By 2040, a more secure, more robust, and stronger transmission system is expected. A

looped transmission system with sufficient redundancy is the key to a more robust and resilient grid. With the gradual expansion of the 230 kV backbone in the Visayas, the looping of the 230 kV system will further ensure system security and reliability of the Visayas Grid. This will also provide grid resiliency during natural calamities by providing alternative transmission corridors. Furthermore, Panay, Negros and Samar's 138 kV system will also be further extended and looped to improve supply, power quality, security, and reliability.

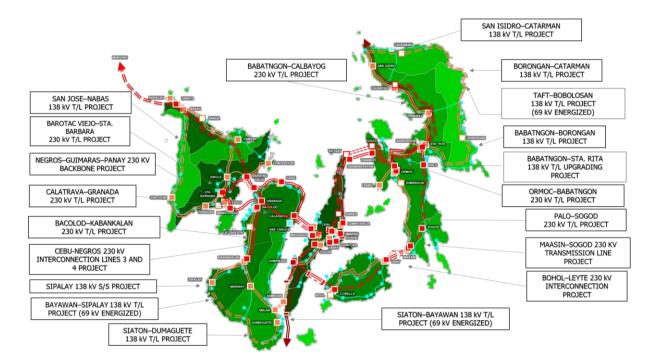
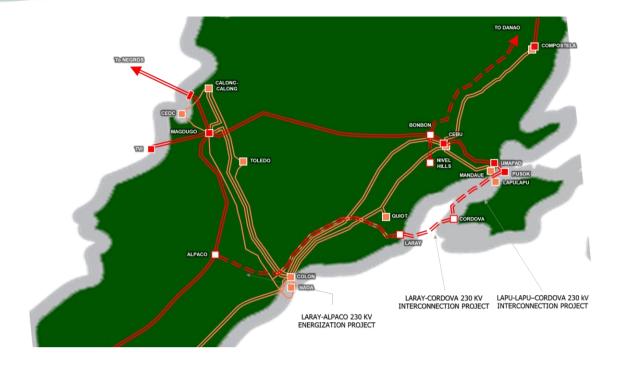



Figure 9.5: Visayas Transmission Outlook for 2031-2040

Figure 9.6 Metro Cebu Transmission Outlook 2031-2040

Table: 9.3 List of Additional Proposed Projects in the Visayas for the period 2031-2040

Project Name	Project Description	Location
230 kV PROJECTS		
Ormoc-Babatngon 230 kV Transmission Line Project	 There is a need to provide reliable power transmission to Leyte and Samar customers. In 2017, a magnitude-6.5 earthquake shook Ormoc, Leyte which left the region without electricity. The Leyte-Samar grid is primarily dependent in Ormoc SS as it houses the HVDC connection to the Luzon Grid and it is where the 230 kV transmission system from Cebu ends. Ormoc SS also serves as the major drawdown SS in Leyte and Samar, large generators injecting power in the Ormoc-Tabango 230 kV Transmission Corridor are absorbed through the 138 kV transmission system that connects Ormoc SS and other 138 kV substations in Leyte and Samar. The excess power is either transmitted to Cebu via 230 kV transmission backbone or to Luzon Grid via 350 kV HVDC transmission corridor. 	Leyte
Laray-Cordova 230 kV Interconnection Project	 The project involves the construction of a new drawdown Substations within the area of Cordova in Visayas. It will be connected to Laray 230 kV SS in Mainland Cebu crossing to Cordova Island via DC 230 kV S/C with a transfer capacity of 600 MW per circuit. 	Cebu
Laray–Alpaco 230 kV Energization Project	• The project involves the construction of a new SWS within the area of Alpaco in Metro Cebu. It will bus-in to the proposed Magdugo–Dumanjug 230 kV TL which is part of the Mindanao– Visayas Interconnection Project. The proposed overhead TL coming from Laray GIS SS, which is connected to Magdugo–Colon 138 kV TL will be extended and will be connected to the new Alpaco SWS. Additionally, with this energization of Laray 230 kV SS will be done.	Cebu
Bacolod–Kabankalan 230 kV Transmission Line Project	• The project connects the northern and southern part of Negros Island. It enables the exchange of power between the two areas. It is part of the long-term plan of putting up a 230 kV backbone loop in the southern portion of Negros. The project aims to provide additional termination points for future powerplants in the area.	Negros Occidental
Bohol-Leyte 230 kV Interconnection Project	 The Bohol-Leyte 230 kV Interconnection Project involves the development of a 230 kV Backbone from Bohol to Leyte. The completion of the project will complete the 230 kV transmission loop between Cebu, Bohol, and Leyte Island. It involves the construction of 230 kV TL that will traverse from Corella–Ubay–Tugas and from Guadalupe–Maasin. Moreover, a DC 230 kV S/C will be laid from Tugas to Guadalupe SWS with a transfer capacity of 600 MW per circuit. 	Bohol and Leyte
Maasin–Sogod 230 kV Transmission Line Project	 The projects involve the construction of a new drawdown SS in the area of Sogod. This will accommodate the customers in Southern Leyte thus giving reliability and addressing the undervoltage issues in the area. A 230 kV designed TL that will be energized at 138 kV will be constructed from Maasin going to the new Sogod SS. 	Leyte

TRANSMISSION LINE		
Cebu-Negros 230 kV Interconnection Line 3 and 4 Project	 The Interconnection project involves the construction of a Cebu-Negros 230 kV S/C Line 3 and 4. The proposed facility will accommodate the excess generation from Panay and Negros going to Cebu. This project will also pave way for the construction of the new Calatrava SWS in Negros and Talavera SWS in Cebu. 	Cebu and Negros
Babatngon-Calbayog 230 kV Transmission Line Project	 The project involves extending the 230 kV backbone in Samar Island. A 230 kV TL will be constructed from Babatngon going to Calbayog SS. It aims to accommodate the entry of power plants under CREZ in the area and will provide system reliability and resiliency in between Leyte and Samar 	Leyte and Samar
Barotac Viejo-Sta. Barbara 230 kV Transmission Line Project	 The project involves extending the 230 kV backbone in Southern Panay. A 230 kV TL will be constructed from Barotac Viejo going to Sta. Barbara SS. It aims to accommodate the entry of powerplants under CREZ in the area and will provide system reliability and resiliency in Southern Panay. 	Panay
Negros-Guimaras-Panay 230 kV Backbone Project	 This project involves developing a 230 kV Transmission Loop between Negros, Guimaras, and Panay Island. It involves laying of DC submarine cables from Negros to Guimaras and to Panay Island. This is to ensure to accommodate the upcoming powerplant entry under CREZ in the area of Negros, Panay and Guimaras. This will also provide reliability to the Negros-Panay interconnection. 	Negros and Panay
Calatrava-Granada 230 kV Transmission Line Project	 With the entry of generation through CREZ in Negros, Panay and Guimaras power will flow going to Cebu and the E.B Magalona-Cadiz-Calatrava 230 kV Backbone Line will overload. The project involves developing a 230 kV Transmission loop in Negros. It involves the construction of a 230 kV TL that will traverse from Granada to Calatrava SS. 	Negros
Lapu-Lapu-Cordova 230 kV Interconnection Project	 The 230 kV transmission corridor in Cebu and Mactan Island is a DC 230 kV TL and submarine cable that traverses from Lapu-Lapu-Umapad-Cebu-Magdugo-Alpaco-Laray- Cordova. Double Outage of the TL from Umapad to Lapu-Lapu will result to the isolation of Lapu-Lapu SS from the grid. The Lapu-Lapu-Cordova 230 kV Interconnection Project will complete the 230 kV transmission loop in Metro Cebu. This will provide a reliable and resilient power grid in Cebu and Mactan Island. 	Cebu
Palo-Sogod 230 kV Transmission Line Project	• The project aims to complete the ultimate plan of creating a 230 kV loop between Cebu, Bohol, and Leyte Islands by the construction of 90-km Palo-Sogod 230 kV TL thereby ensuring the reliable and resilient transmission of power between Cebu, Bohol, and Leyte Island.	Leyte
138 kV PROJECTS		
Babatngon–Sta. Rita 138 kV Transmission Line Upgrading	 The project involves the upgrading of a portion of the existing Babatngon-Paranas 138 kV line along San Juanico Strait and the construction of Sta. Rita SS, which will bus-in to the said transmission corridor. 	Leyte and Samar
Siaton-Bayawan 138 kV Transmission Line Project (Initially energized at 69 kV)	• The project involves the construction of 138 kV-designed TL, energized at 69 kV, that will connect Siaton and Bayawan LES. The project is part of the ultimate plan of establishing 138 kV loop in southern Negros.	Negros Occidental and Negros Oriental
Taft-Bobolosan 138 kV Transmission Line Project (Initially energized at 69 kV)	 The project involves the construction of 138 kV-designed TL, energized at 69 kV, that will connect Taft and Bobolosan load End SS. These structures, to be found in northeastern Samar, will be part of the ultimate plan of establishing a 138 kV loop around Samar Island 	Northern and Eastern Samar
San Isidro-Catarman 138 kV Transmission Line Project	 The proposed project involves the development of a new DC 138 kV TL from Calbayog SS going to San Isidro and Catarman in Northern Samar. This transmission facility will improve the reliability in the area. 	Samar
Bayawan-Sipalay 138 kV Transmission Line Project (Initially energized at 69 kV)	 The project involves the construction of 138 kV-designed TL, energized at 69 kV, that will connect Bayawan and Sipalay LES. The project is part of the ultimate plan of establishing 138 kV loop in southern Negros. 	Negros Occidental and Negros Oriental
Upgrading of acquired Transmission Assets	 Assets of generating companies that are classified by the ERC as transmission assets shall be maintained and operated by the TNP. The project involves the replacement and upgrading of acquired primary and secondary equipment, which are already old, obsolete, and not compliant with the TNP standards. A new separate control building will be constructed to ensure safety and improved operational efficiency. 	Cebu
Babatngon–Borongan 138 kV Transmission Line Project	 The Paranas-Borongan-Quinapondan 69 kV Line serves loads of the Eastern Samar through ESAMELCO's LES. The existing 69 kV line serving the said area is having a length of more than 190 km which is prone to long outages and tedious to maintain. The proposed Babatngon-Borongan 138 kV TL Project aims to provide a transmission backbone corridor along the eastern part of Samar Island. The project will also drastically improve the reliability of the power supply in the area. This project will also construct a new drawdown 138 kV SS in Borongan. 	Samar and Leyte
Borongan–Catarman 138 kV Transmission Line Project	• Samar Island is located in eastern part of Visayas. Samar is frequently impacted by typhoons from Pacific Ocean which makes its transmission system very susceptible to interruption. There is a need to strengthen the reliability of transmission backbone in Samar Island by creating 138 kV transmission loop system within the Island. The Borongan-Catarman 138 kV TL Project will address the generation and load curtailment in the event of outage of the entire Babatngon-Sta Rita 138 kV TL. Sta. Rita, Paranas,	Samar

X

X

TRANSMISSION LINE		
	Calbayog, San Isidro and Catarman SS are no longer solely dependent on Babatngon-Sta Rita 138 kV TL. Moreover, the proposed project completes the 138 kV backbone loop and thereby ensures reliable transmission of power within Samar Island.	
Siaton-Dumaguete 138 kV Transmission Line Project	 The project aims to complete the 138 kV Backbone loop in the Southern Negros area. It involves the extension of the 138 kV line from Siaton going to Dumanjug substation. This will strengthen the transmission reliability and will provide resiliency in the Negros Island. 	Negros
San Jose-Nabas 138 kV Transmission Line Project	 The project aims to complete the ultimate plan of creating a 138 kV loop in Panay Island by the construction of 125-km San Jose-Nabas 138 kV TL thereby ensuring the reliable and resilient transmission of power in Panay Island. 	Panay

K

K

SUBSTATION		
Project Name	Project Description	Location
138 kV PROJECTS		
Sipalay 138 kV Substation Project	 The proposed project involves the upgrading of the existing Sipalay 69 kV SWS to a 138 kV SS. This SS facility will serve as a new drawdown SS in preparation for the looping configuration in the southern part of Negros Island. 	Negros
Visayas Substation Upgrading Project 4	 The proposed project involves the expansion of the various Visayas SS to increase the SS capacity due to the forecasted load growth and to sustain the N-1 contingency provision prescribed by the PGC. 	Cebu, Panay, Leyte, Negros and Bohol
Visayas Regional PCB Replacement Project 2	 The projects involve the replacement of the existing PCB in various NGCP SS in the Visayas due to the following: Underrated capacity – short circuit current and/or continuous current capacity is less than the actual current that will flow into the circuit breaker. Old age - These PCB are more or less 40 years old in the service, hence they are becoming less and less reliable every passing year. Although these PCB can still operate, the reliability of the system is endangered due to their unpredictable operation. These PCB are bound to fail to operate that will result in widespread system disturbance which should be avoided. 	Cebu, Negros, Panay, Bohol, Leyte, Samar
Visayas PCB Replacement Project 3	 The projects involve the replacement of the existing PCB in various NGCP SS in the Visayas due to the following: Underrated capacity – short circuit current and/or continuous current capacity is less than the actual current that will flow into the circuit breaker. Old age - These PCB are more or less 40 years old in the service, hence they are becoming less and less reliable every passing year. Although these PCB can still operate, the reliability of the system is endangered due to their unpredictable operation. These PCB are bound to fail to operate that will result in widespread system disturbance which should be avoided 	
Visayas Substation Upgrading Project 5	 The proposed project involves the expansion of the various Visayas SS to increase the SS capacity due to the forecasted load growth and to sustain the N-1 contingency provision prescribed by the PGC. 	Cebu, Panay, Leyte, Negros and Bohol

VOLTAGE IMPROVEMENT		
Project Name	Project Description	Location
230 kV PROJECTS		
Visayas Voltage Improvement Project 3	 The Visayas Voltage Improvement Project 3 aims to provide reactive power support to address undervoltage problems in Visayas. 	Cebu
Visayas Voltage Improvement Project 4	• The Visayas Voltage Improvement Project 4 will address the undervoltage problems in Cebu and Negros Islands. The installation of Capacitor in Granada, La Carlota, and Cordova SS will address the projected undervoltage in each area.	Cebu and Negros

X

MINDANAO TRANSMISSION OUTLOOK

The power supply deficiency experienced in Mindanao for the past years especially during the dry season has been averted by the entry of bulk generation capacity additions from several coal-fired power plant projects. In the integration of these power plant projects to the Mindanao Grid, new transmission backbones were developed as well as the energization of the Balo-i-Villanueva-Maramag-Bunawan transmission line to 230 kV was implemented. With the completion of the interconnection between Mindanao and the Visayas, there would be more opportunities for power exchange. In this chapter, several projects were proposed that will make the Mindanao grid more reliable and robust to ensure the continuity of power delivery.

In terms of transmission system configuration, Mindanao is relatively a robust grid. However, security issues on the island remain a serious concern, thus NGCP is still facing

10.1 Transmission Outlook for 2023-2030

From the year 2023 to 2030, the development plan will be focusing on the extension of 138 kV corridors namely the Maco-Mati 138 kV TL, San Francisco-Tago 138 kV TL, and Tacurong-Kalamansig 69 kV TL. In this horizon, the upgrading and expansion of several substations projects will also be implemented.

To accommodate huge spot loads, the Koronadal 138 kV SS will be developed to cater to the entry of the planned

major challenges in implementing its operations and construction of key transmission projects. Notably, another vital issue in the Mindanao grid is the looming low voltage issue in Zamboanga City. Due to the long distance and radial configuration of the transmission line delivering power to the area relative to the continuous increase in demand, there will be an impending low voltage in the area which can be resolved by power mitigating transmission facility in the short term. In this case, a local power plant should be constructed in the area to balance the essential reactive requirement of the system.

Meanwhile, to support the other requirements for load growth and system reliability of the Mindanao Grid, the reinforcement of the existing 138 kV substations, the extension of some of the existing 230 kV and 138 kV transmission lines, looping of some 69 kV transmission systems, as well as the implementation of power quality projects are necessary.

mining operation in the municipality of Tampakan. In northern Mindanao, the Laguindingan 230 kV SS is being constructed to serve the power requirement of the Laguindingan Economic Zone. In North Cotabato, the completion of the Kabacan SS is on the way to address the power demand requirement of the customers in the province.

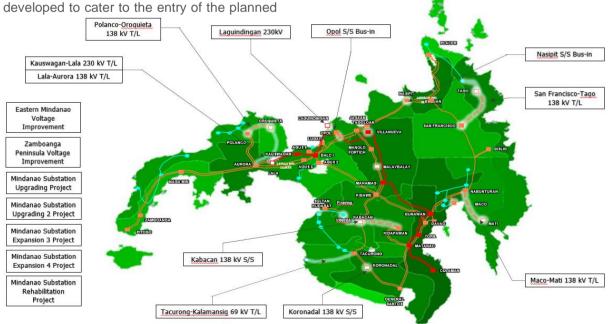


Figure 10.1: Proposed Mindanao Transmission Outlook for 2023-2030

 Table 10.1 List of Proposed Mindanao Transmission Projects for the period 2023-2030

TRANSMISSION LINE Project Name and	Project Driver	Project Com	nonents	Project Cost	Location	ETC
	and Status	Substation	Transmission Line			
V Transmission Line	 Generation Entry, System Reliability ERC-approved 	 Lala 230 kV SS: 2x300 MVA 230/138 kV Power Transformers, 8-230 kV PCB, 6-138 kV PCB Aurora 138 kV SS: 3-138 kV PCB 	 Kauswagan-Lala 230 kV TL, ST- DC, 4-795 MCM ACSR, 56 km. Lala-Aurora 138 kV TL, ST-DC, 2-795 MCM ACSR, 27.17 km. 	2,836M	Lanao del Norte, Zamboanga del Sur	Jun 2023
Formerly Balo-i – Kauswa TL Phase 2, the pro Kauswagan SS to Lala SS bundle-of-two power con at 230 kV voltage level. The installation of two po he Lala SS to be linked to SS through a 138 kV TL. The majority of power Camboanga Peninsula i Balo-i – Agus 5 – Aurora 1 are critically loaded durin The project provides a r network for the Zambo achieve continuous norma s the extension of the pla cV transmission backb complements the MVIP.	Ject connects the utilizing a DC TL in a ductor configuration The project includes ower transformers in the existing Aurora consumption in the s supplied through 38 kV lines. These TL ig the N-1 condition. eliable transmission banga Peninsula to al grid operation. It anned Mindanao 230		KAUSWAGAN			
38 kV Transmission ine	id 69 kV Line shuts loads in Surigao nce of an alternative of the 138 kV line cisco SS to the new of the 69 kV lines in project allows the g line outages and lity and reliability	 San Francisco 138 kV SS: 2-138 kV PCB Tago 138 kV SS: 1x50 MVA 138/69 kV Power Transformer, 6-138 kV PCB, 8-69 kV PCB 	7.5 MVAR 7.5 MVAR 7.5 MVAR		Agusan del Sur, Surigao del Sur	May 2025
Polanco–Oroquieta 38 kV Transmission ine	 Load Growth 	 Polanco 138 kV SS: 4-10 MVAR Shunt Capacitors 4-138 kV PCB Oroquieta 69 kV SWS (New) 2-7.5 MVAR Shunt Capacitors 8 -69 kV PCB 	 Polanco-Oroquieta 138 kV Line (New), ST-DC, 1-795 MCM ACSR, 48 km Oroquieta-Villaflor 69 kV Line (New), ST-DC, 1-795 MCM ACSR, 1 km 	8,742M	Misamis Occidental	Feb 2023

TRANSMISSION LINE		
Project Name and Project Driver Description and Status	Project Con Substation	nponents Project Cost Location ETC Transmission Line (Million Pesos)
The project covers the construction of 48 km 138 kV TL (initially energized at 69 kV) from Polanco 138 kV SS to Oroquieta SWS and upgrading of the existing 84 km 69 kV TL from Aurora SS to MOELCI I's Villaflor SS.	 Aurora 69 kV SS: 2-69 kV PCB Bañadero 69 kV SS: 2-7.5 MVAR Shunt Capacitor 2-69 kV PCB Villaflor 69 kV SS: 2-7.5 MVAR Shunt Capacitor 2-69 kV PCB 	Aurora-Villaflor 69 kV Line (Upgrading), SP-SC, 1-795 MCM ACSR, 84 km
Also included in the project are the 2-7.5 MVAR Shunt Capacitors at Banadero and Villaflor LES and a 69 kV PCB for the entry of BESS Project in Aurora.		AURORA ROXAS AURORA ROXAS AURORA ROXAS AURORA SS km JOM AURORA SS km AURORA SS KM AUR
Maco-Mati 138 kV Load Growth Transmission Line 	 Maco 138 kV SS: 4-138 kV PCB and associated equipment Mati 138 kV SS: 1x50 MVA 138/69 kV Power Transformer 6-138 kV PCB and associated equipment 	Maco-Mati 138 kV Line, ST-DC, 7,684M Davao Del Dec 1-795 MCM ACSR, 72.3 km Norte 2028
The project involves the construction of a 72.3 km, 138 kV, 1-795 MCM ACSR, ST-DC TL from Maco 138 kV SS to new Mati 138 kV SS. A 50 MVA 138/69 kV power transformer will be installed at the Mati SS. Another 50 MVA 138/69 kV power transformer from Nasipit SS will be transferred to the said SS.	5-69 kV PCB and associated equipment	MACO SUBSTATION DONECO Maco Mabini Banaybanay Mati Mati Mati Mati Mati Mati Mati Mati
69 kV PROJECTS Tacurong- Kalamansig 69 kV Transmission Line • System Reliability • Filed to ERC	 Tacurong 138 kV SS: 1-69 kV PCB Kalamansig 69 kV SwS: 1x7.5 MVAR 69 kV Capacitor, 3-69 kV PCB 	Tacurong-Kalamansig 69 kV TL, 2,349 M Sultan Dec ST/SP-SC, 1-336.4 MCM ACSR, Kudarat 2024 85 km.
This project allows the towns of Lebak, Kalamansig, Bagumbayan, and Senator Ninoy Aquino to enjoy cheaper and reliable electricity from the grid. These areas located in the Province of Sultan Kudarat in the SOCCSKSARGEN Region are considered off- grid loads and are currently being served by a limited and costly power.		TACURONG
The project involves the implementation of a new 69 kV SC line, expansion of Tacurong SS, and construction of a switching station in Kalamansig. The completion of the project ends the dependency of power consumers from SPUG as they start enjoying the reliable and cheaper power supply from the grid.		DSA Kalandagan Koronadal Bagontapay Kalamansig
Sultan Kudarat- Pinaring 69 kV Transmission Line UpgradingLoad Growth System Reliability and Security	 Sultan Kudarat 69 kV SS: 2-69 kV PCB and associated equipment Pinaring 69 kV SWS: 6-69 kV PCB and associated equipment 	 Sultan Kudarat-Pinaring 69 kV 2,249M Sultan Jun TL, SP-SC (Upgrading), 1-795 Kudarat 2028 MCM ACSR, 6.67 km Sultan Kudarat-Pinaring 69 kV TL, SP-SC (New), 1-795 MCM ACSR, 6.67 km
The project involves the following: construction of a new 69 kV SWS in Pinaring,		

UX,

X

X

TRANSMISSION LINE

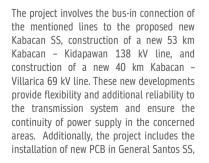
Project Name and Description Substation Transmission Line construction of 6.67 km, 69 kV, 1-795 MCM SULTAN KUDARAT TACURONG ACSR, SP-SC TL from Sultan Kudarat to Pinaring 69 kV SWS , and upgrading of the 6.54 km 6.67 km existing 6.67 km Sultan Kudarat-Pinaring 69 kV segment of Sultan Kudarat-DSA-Tacurong PINARING 69 kV Line to 1-795 MCM ACSR. Isular CLPC Awang Esperanza Salbu Salman

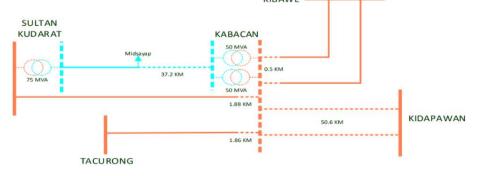
SUBSTATION						FTO
Project Name and	Project Driver	Project Com	•	Project Cost (Million Pesos)	Location	ETC
Description	and Status	Substation	Transmission Line			
230 kV PROJECTS						
Mindanao Substation Upgrading Project (MSUP)	 Load Growth ERC-approved 	 Bislig 138 SS:1x50 MVA, 138/69 kV Power Transformer 3-138 kV PCB, 6-69 kV PCB Butuan 138 kV SS, 3x7.5 MVAR 69 kV Capacitors, 5-138 kV PCB, 3-69 kV PCB 		5,016M	Surigao del Sur, Agusan del Norte North Cotabato, Zamboanga	May 2026
The existing transforme	r capacities in various	 Kidapawan 138 kV SS: 1x50 MVA 			del Sur,	
substations in Mindanad further accommodate t		138/69 kV Power Transformer (from Culaman SS), 1-69 kV PCB			Surigao del Norte,	
load while some substat	ions are yet to comply	• Pitogo 138 kV SS: 1x100 MVA			Agusan del	
with the single-outage	e (N-1) contingency	138/69 kV Power Transformer,			Sur, South	
requirement of the PGC	3 . 0	2x7.5 MVAR 69 kV Capacitors, 1-			Cotabato,	
violation and breaker fai		138 kV CAIS, 1-69 kV CAIS, 2-69 kV			Sultan	
in some areas in the Min	idanao Grid.	PCB			Kudarat,	
MCUD involves the inst		• Placer 138 kV SS: 1x100 MVA			Lanao del	
MSUP involves the inst power transformers an		138/69 kV Power Transformer, 2x7.5 MVAR 69 kV Capacitors, 2-			Norte, Bukidnon,	
replacement of old, de	1 /	138 kV PCB, 7-69 kV PCB			Zamboanga	
underrated PCB to en	, ,	• San Francisco 138 kV SS: 1x50			Sibugay,	
reliable transmission sys		MVA 138/69 kV Power			Misamis	
		Transformer, 3x7.5 MVAR 69 kV			Oriental and	
		Capacitors, 4-138 kV PCB, 4-69 kV			Zamboanga	
		PCB			del Norte	
		 Gen. Santos 138 kV SS: 1x100 MVA 				
		138/69 kV Power Transformer,				
		1x7.5 MVAR 69 Capacitor, 1-138 kV				
		PCB, 8-69 kV PCB				
		• Tacurong 138 kV SS: 1x7.5 MVAR				
		69 kV Capacitor, 10-69 kV PCB				
		Agus 6 138 kV SS: 1x100 MVA 138/69 kV Power Transformer, 2-				

- 138/69 kV Power Transformer, 2-138 kV PCB, 3-69 kV PCB • Maramag 138 kV SS: 1x75 MVA
- 138/69 kV Power Transformer, 1-138 kV PCB, 1-69 kV PCB
- Naga Min 138 kV SS: 1x100 MVA 138/69 kV Power Transformer, 2-69 kV PCB
- Opol 138 kV SS: 1x75 MVA 138/69 kV Power Transformer, 2-69 kV PCB
- Polanco 138 kV SS: 1x75 MVA 138/69 kV Power Transformer, 3-138 kV PCB, 1-69 kV PCB.

SUBSTATION Project Name and Project Driver	Project Con	nonentc	Project Cost	Location	ETC	hap
Description and Status	Substation	Transmission Line		LULALIUII		ote
Mindanao Substation Upgrading Project 2 (MSUP 2) • System Reliability and Security	 Balo-i SS: 1x100 MVA, 138/69 kV Power Transformer, 3-138 kV PCB, 6-69 kV PCB Tagoloan SS: 1x100 MVA, 138/69 kV Power Transformer, 4-138 kV PCB, 4-69 kV PCB 		7,264.54M	Lanao Del Norte, Bukidnon, Agusan Del Norte, Misamis	May 2026	Chapter 10
The project involves the installation of additional 300 MVA, 230/138 kV Power Transformer at Bunawan SS, 2-150 MVA 138/69 kV Power Transformers at Davao SS, 2- 100, 138/69 kV MVA Power Transformers at General Santos, Toril and Bunawan Substations, 100 MVA 138/69 kV Power Transformers at Balo-I, Tagoloan, Jasaan, Butuan, Kidapawan, and Aurora substations, and 50 MVA 138/69 Power Transformer at Kibawe SS. Also, the project includes the installation of PCB for the connection of BESS projects in Jasaan, Maramag and Toril Substations and for the entry of Power Plant projects such as South Pulangi 255 MW HEPP at Kibawe SS, 3.6 MW Mt. Apo Geothermal Power Plant at Kidapawan SS and 28 MW Sangali Diesel Power Plant at Zamboanga SS.	 Jasaan SS: 1-100 MVA, 138/69 kV Power Transformer, 2-138 kV PCB, 3-69 kV PCB Kibawe SS: 1-50 MVA, 138/69 kV Power Transformer, 5-138 kV PCB, 2-69 kV PCB Butuan SS: 1-100 MVA, 138/69 kV Power Transformer, 1-138 kV PCB, 1-69 kV PCB Davao SS: 2-150 MVA, 138/69 kV Power Transformer, 3-138 kV PCB, 7-69 kV PCB Toril SS: 2-100 MVA, 138/69 kV Power Transformer, 2-138 kV PCB, 7-69 kV PCB Bunawan SS: 1-300 MVA 230/138 kV Power Transformer, 2-100 MVA, 138/69 kV Power Transformer, 3- 230 kV PCB, 10-138 kV PCB, 5-69 kV PCB Kidapawan SS: 1-100 MVA, 138/69 kV Power Transformer, 1- 69 kV PCB General Santos SS: 2-100 MVA, 138/69 kV Power Transformer 			Oriental Davao, Sultan Kudarat, Zamboanga, Surigao Del Sur		
Mindanao Substation Expansion 3 Project (MSE3P) Starting 2023, the existing transformers in	 Pitogo 138 kV SS: 1x100 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 1-69 kV PCB Placer 138 kV SS: 1x100 MVA 138/69 kV Power Transformer San Francisco 138 kV SS: 1x100 		1,465M	Zamboanga del Sur, Surigao del Norte, Agusan del Sur, Davao	Mar 2024	
Pitogo, Placer, San Francisco, and Matanao substations will exceed their thermal capacity during N-1 conditions. The installation of an additional transformer in each of these substations maintains the continuous operation even during the outage of one of the transformers. This development also complies with the N-1 contingency criterion of the PGC.	 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 1-69 kV PCB Matanao 138 kV SS: 1x100 MVA 138/69 kV Power Transformer, 2- 138 kV PCB, 1-69 kV PCB 			del Sur		
Mindanao Substation Rehabilitation Project (MSRP)OngoingMindanao Substation Rehabilitation Project (MSRP) consists of the replacement of seventy- five (75) defective, deteriorated, obsolete, and low fault level capacity PCB with new ones which provide system reliability and power quality to the grid.An additional six circuit breakers are for Bunawan SS which connect the feeder of Davao	 Aurora SS: 1-138 kV PCB 3-69 kV PCB Zamboanga SS: 3-138 kV PCB 3-69 kV PCB Agus 5 Switchyard: 6-138 kV PCB Balo-I SS: 13-138 kV PCB Lugait SS: 5-138 kV PCB, 1-69 kV PCB Tagoloan SS: 4-138 kV PCB 1-69 kV PCB Maramag (Pulangi 4) SS: 10-138 kV PCB, 3-69 kV PCB Nasipit SS: 2-138 kV PCB Davao SS: 4-138 kV PCB, 2-69 kV PCB 		3,047,13M	Zamboanga del Sur, Surigao del Norte, Agusan del Sur, South Cotabato, Sultan Kudarat, Lanao del Norte, Bukidnon, Zamboanga Sibugay, Misamis	Dec 2026	

X


N.


X

NA-

X

SUBSTATION						2
Project Name and Project Driver Description and Status	Project Con Substation	nponents Transmission Line	Project Cost (Million Pesos)	Location	ETC	Chapter 10
Light and Power Corporation (DLPC) while two definite-purpose circuit breakers are for the connection of capacitor bank in Sultan Kudarat SS.	 Bunawan SS: 5-138 kV PCB Sultan Kudarat SS: 6-69 kV PCB Maco SS: 1-7.5 MVAR, 69 kV 2-69 kV PCB Nabunturan SS: 1x7.5 MVAR, 69 kV 3-138 kV PCB 4-69 kV PCB 			Oriental and Zamboanga del Norte		r 10
Laguindingan 230 kV • Load Growth Substation • Filed to ERC	 Laguindingan 230 kV SS: 2x300 MVA 230/138 kV and 1x100 MVA 138/69 kV Power Transformers, 10-230 kV PCB, 7-138 kV PCB, 3- 69 kV PCB equipment Tagoloan 138 kV SS: 5-138 kV PCB 	• Laguindingan SS: Bus-in to Balo-i-Laguindingan 230 kV TL, ST-DC, 2-795 MCM ACSR/AS, 2 x 5.75 km	2,606M	Misamis Oriental	Dec 2024	
The abrupt industrial and commercial developments in the area of Laguindingan						
requires substantial power supply		LAGUINDINGAN		_		
requirement, which exceeds the existing capacity of nearby transmission facilities.						
The project involves the implementation of a new 230 kV SS within Laguindingan that will bus-in to the existing Balo-i – Villanueva 230 kV line. This provides a stable supply and efficient delivery of bulk power to the loads in the vicinity through the 230 kV backbone of the Mindanao Grid. The continuous power supply is essential for the operation of the Laguindingan Economic Zone.	BALO-I			ANUEVA		
138 kV PROJECTS						
Kabacan138kV• System ReliabilitySubstation* Filed to ERCPhase 1 - SubstationPhase 2 - RemainingTL	 Kabacan 138 kV SS: 1x50 MVA 138/69 kV Power Transformer, 11-138 kV PCB, 1-69 kV PCB Kidapawan 138 kV SS: 2-138 kV PCB Gen. Santos 138 kV SS: 4-138 kV PCB 	 Kabacan-Kidapawan 138 kV TL, ST-DC, 1-795 MCM ACSR/AS, 50.6 km Kabacan-Villarica 69 kV TL, SP- SC, 1-336.4 MCM ACSR/AS, 37.2 km Kibawe 138 kV Line Extension, ST-DC, 1-795 MCM ACSR/AS, 0.5 km 	4,978M	Cotabato	Dec 2024 (SS portion) Dec 2025 (TL portion)	
The Kibawe – Sultan Kudarat and Kabacan – Tacurong 138 kV lines traverse areas with the prevalent presence of militant groups and lawless elements. Thus, transmission facilities are exposed to a high risk of sabotage. An outage of any of these lines will result in large- scale power interruptions in Sultan Kudarat,		 Tacurong 138 kV Line Extension, ST-SC, 1-795 MCM ACSR/AS, 1.86 km Sultan Kudarat 138 kV Line Extension, ST-SC, 1-795 MCM ACSR/AS, 1.88 km 				
Maguindanao, North Cotabato, and South Cotabato provinces.		KIB	AWE			

					0
SUBSTATIONProject Name and DescriptionProject Driver and Statusallowing the entry of the 105 MW Coal-Fired Power Plant Phase 2 of Sarangani Energy Corporation (SEC).	Project Components Substation Transmission Line	Project Cost (Million Pesos)	Location	ETC	Chapter 10
 Mindanao Substation Expansion 4 Project (MSE4P) Several substations in Mindanao are expected to become overloaded based on the demand forecast. Thus, transmission facilities should be developed in which substation capacity must be upgraded 	 Pitogo SS: 1x100 MVA 138/69 kV Power Transformer, 1-138 kV PCB,1-69 kV PCB Naga Min SS: 1x100 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB Polanco SS: 1x100 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB Agus 6 SS: 1x100 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB Maramag SS: 1x100 MVA, 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB Maramag SS: 1x100 MVA, 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB Maco SS: 1x100 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB Culaman SS: 1x50 MVA, 230/69 kV Power Transformer, 2-230 kV PCB, 2-69 kV PCB Sultan Kudarat SS: 2-100 MVA, 138/69 kV POwer Transformer, 4-138 kV PCB, 4-69 kV PCB Nasipit SS: 1-100 MVA 138/69 kV Power Transformer, 2-138 kV PCB, 2-69 kV PCB 	2,968M	Surigao del Sur, Agusan del Norte North Cotabato,	Dec 2025	

Transmission Line 138 kV PROJECTS Zamboanga Peninsula Power Quality • Zamboanga SS: 1x200 MVAR Static 1,925M Sultan Voltage Improvement • Filed to ERC Synchronous Compensator, 3-138 Kudarat, Project (ZPVIP) kV PCB. 1-69 kV PCB South • Naga Min SS: 4x10 MVAR Cotabato Pitogo L1 Naga Min L2 WMPC Naga Min Capacitors, 4-138 kV PCB L2 11 Pitogo SS: 2x10 MVAR Capacitors, 6-138 kV PCB The main problem in the Zamboanga • General Santos SS: 3x30 MVAR di di di Peninsula is the absence of a local baseload Capacitors, 3-138 kV PCB 100 MVAR STATCOM • Tacurong SS: 2x30 generator, which triggers voltage difficulties in **MVAR** ÷. Capacitors, 2-138 kV PCB the northwestern Mindanao area. Under the circumstance, voltage levels should be ÷. ŵ. ŵ. ÷. managed to maintain the normal operation of the grid. 30 MVAR SVO 10 MVA L2 L2 L1 While waiting for the needed power plant in 50 MVA TX 1 50 MVA TX 2 the area, ZPVIP provides voltage support in di. the peninsula by installing 200 MVAR Static di. VAR Compensator (STATCOM) in Zamboanga Zamboanga L2 BESS BESS SS. 4x10 MVAR 138 kV Capacitor in Naga Min 10 MVAR 10 MVAR 10 MVAF L1 SS, and 2x10 MVAR Capacitor in Pitogo SS. ÷. STATCOM offers a fast response in the control

50 MVA TX 2 50 MVA TX 1

L1

di.

÷

÷.

100 MVA TX 1 ÷.

÷

÷.

100 MVA TX 2 曲

÷.

ŵ.

100 MVA TX 3

VOLTAGE IMPROVEMENTS

of reactive power flow, thereby increasing the

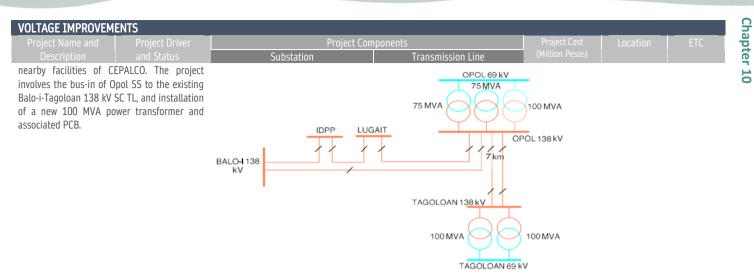
stability of the network.

Page | 126

10 MVAR

10 MVAR

Jun 2024


100 MVAR STATCOM

÷

FUTURE

VOLTAGE IMPROVEMENT	S					
Project Name and	Project Driver	Project Cor		Project Cost (Million Pesos)	Location	ETC
Bus-in St	and Status ower Quality, ystem Reliability iled to ERC	Substation • Nasipit SS: 1-100 MVA Power Transformer 2-138 kV PCB, 3-69 kV PCB	Transmission Line Jasaan-Butuan Bus-in Line, ST- DC, 1-795 MCM ACSR, 4 km Swinging of TM2 Lines, ST-DC, 2- 795 MCM ACSR, 0.5 km	(Mittel) (2005) 816M	Agusan del Norte	Jun 2024
The project is proposed to a low voltage on the sub Northeastern Mindanao follo the Nasipit-Butuan 138 kV S The bus-in line ensures the c of electricity to Agusan and S even during N-1. Also, transformer in Nasipit SS of PGC requirement on N-1 solves possible load curtail existing transformer become to outage or preventive ma the replacement of PCB in important to precisely protect fault.	stations in the wing an outage of single Circuit line. continuous supply Surigao provinces the additional complies with the contingency and ment if the only s unavailable due intenance. Lastly, the substation is				UAN	
	ue to increasing Capacitor in the tage level within PGC even during so maintains the re area until the	 Butuan SS: 3x10 MVAR Shunt Capacitor, 3-138 kV PCB San Francisco SS: 3x10 MVAR Shunt Capacitor, 3-138 kV PCB Nabunturan SS: 3x10 MVAR Shunt Capacitor, 3-138 kV PCB Maco SS: 3x10 MVAR Shunt Capacitor, 3-138 kV PCB Tandag SS: 1x7.5 MVAR Shunt Capacitors, 1-69 kV PCB Claver SS: 1x7.5 MVAR Shunt Capacitor, 1-69 kV PCB 		868M	Agusan del Norte, Agusan del Sur, Davao de Oro	Jun 2024
	oad Growth iled to ERC	 Koronadal 138 kV SS, 2x150 MVA 138/69 Power Transformers, 14- 138 kV PCB, 6-69 kV PCB 	 Koronadal SS Bus-in to Tacurong-General Santos 138 kV TL, ST-DC, 1-795 MCM ACSR, 0.5 km. 	2,539M	South Cotabato	Jun 2026
Power is being supplied to Ko a substation in its neighbori The demand for South Cotal the nearby municipalities is r whose amount is already loading of an existing substa Also, there is a planned oper the municipality of Tampaka a 138 kV direct connection to	ng city, Tacurong. bato's capital and apidly increasing, equivalent to a tion in Mindanao. ation of mining in n that will require		Santos Tacurong Tacurong		⊈ ao mv ¥ ao mv	AR AR
	ystem Reliability Iled to ERC	• Opol 138 kV 55: 1x100 MVA Power Transformer, 5-138 kV PCB, 1-69 kV PCB	 Opol SS Bus-in to Balo-i- Tagoloan 138 kV Line, ST-DC, 1-795 MCM ACSR/AS, 4 km Opol-Carmen 69 kV Line Re- routing, SP-SC, 1-336.4 MCM ACSR/AS, 0.5 km 	1,274M	Misamis Oriental	Sept 2027

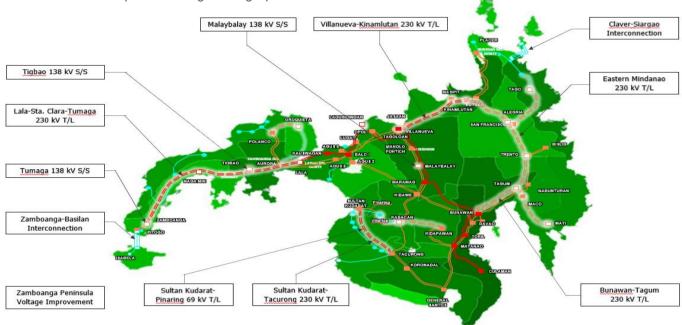
The project is a grid expansion and reliability project which also improves the system voltage within the franchise area of Misamis Oriental I Electric Cooperative (MORESCO I) and other

TSLAND INTERCONNECTION

ISLAND INTERCONNECTION					
Project Name and Project Driver	Project Con			Location	
Description and Status	Substation	Transmission Line	(Million Pesos)		
Mindanao-Visayas • Island Interconnection • ERC - Approved Mindanao Interconnection Project-Phase 1	 Dumanjug Converter Station 2-225 MW Thyristor Valve 2-225 MW 230 kV AC/±350 kV DC Converter Transformer 2-150 MVA 230/138 kV Power Transformer 2-100 MVA 138/69 kV Power Transformer 14- 230 kV PCB and associated 	 Dumanjug CS/SS-Magdugo SS 230 kV Line, ST-DC, 4-795 MCM ACSR/AS, 52 km Bus-in of Dumanjug SS to Colon- Samboan 138 kV Line, ST-DC, 1-795 MCM ACSR/AS, 8 km Lapulapu SS-Umapad SS 	31,615.751 M	Surigao Del Norte, Misamis Occidental	Aug 2023
(2011-037RC) - this phase involved the preparation of the updated project feasibility study, the conduct of the transmission route survey and the hiring of consultancy services.	equipment 10-138 kV PCB and associated equipment 5-69 kV PCB and associated equipment • Lala Converter Station 2-225 MW Thyristor Valve 2-225 MW 230 kV	Extension 138 kV Line, ST-DC, 4x795 MCM ACSR, 3 km • Dumanjug CS-Santander CTS ±350 kV Line, Bi-Pole, 3-795 MCM ACSR/AS, 73 km			
The Conduct of Desktop Study and Hydrographic Survey for the Western Route of the Visayas -Mindanao Interconnection Project (2015-201RC). This project involved the conduct of Desktop Study and Hydrographic Survey for the interconnection of the Visayas and Mindanao Grids considering the western route option.	 AC/±350 kV DC Converter Transformer 8-230 kV PCB and associated equipment Umapad GIS SS (New) 2-300 MVA 230/69 kV Transformer 9-230 kV PCB and Associated equipment 9- 69 kV PCB and associated equipment Magdugo SS (Expansion) 2-230 kV 	 Dapitan CTS-Lala CS ±350 kV Line, Bi-Pole, 3-795 MCM ACSR/AS, 138 km Dumanjug CS-Alegria ES 20 kV Line, ST-DC, 2-795 MCM ACSR/AS, 20 km Lala CS-Kolambugan ES 20 kV Line, ST-DC, 2-795 MCM ACSR/AS, 20 km 			
Mindanao-Visayas Interconnection Project (Visayas-Mindanao Interconnection Project (2017-034RC) - considering the western route for the MVIP, the proposed interconnection involves the installation of a	PCB and associated equipment	 Santander CTS-Dapitan CTS ±350 kV Line, Bi-Pole, 1,500 mm2 HVDC Mass Impregnated (MI), 92 km 			
92 km HVDC submarine cable, a total of 211 km of HVDC overhead TL and 93 km of conventional alternating current (AC) TL. It will also involve the construction of inverter/converter stations at both ends of the HVDC system as well as various SS expansions.	10	Zamboanga L1 00 MVA 0 100 MVA 0 7.5 MVAR Tulungatong Tumaga San Jose	Pitogo BESS Pitogo 100 MVA Pi	Pitogo 138 kV Bus togo 69 kV Bus	

Isabela

BASELCO


7.5MVAR Reactor

10.2 Transmission Outlook for 2031-2040

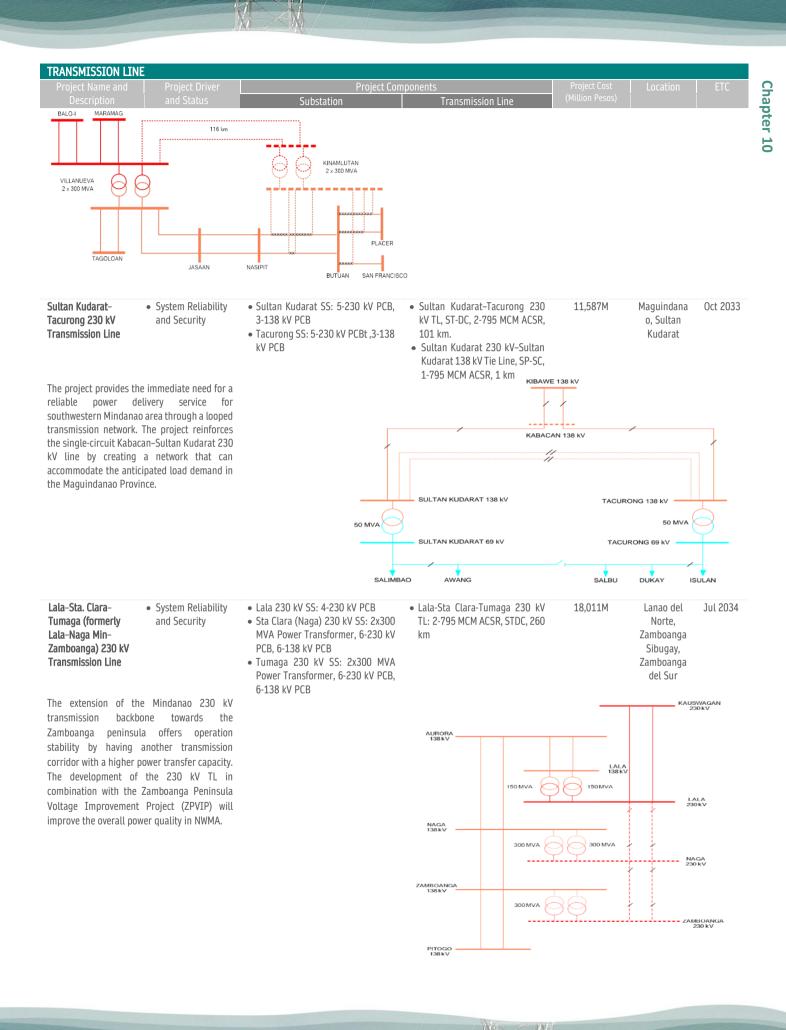
From the year 2031 to 2040, most of the projects will be concentrating on the improvement of system reliability. In this period, the following 230 kV line segments of the grid will be implemented: The Villanueva–Kinamlutan 230 kV TL, Bunawan–Tagum 230 kV TL, and the Eastern Mindanao 230 kV TL. These projects will complete the 230 kV loop in the eastern part of the Mindanao grid. Additionally, the Lala–Sta. Clara–Zamboanga 230 kV TL will be constructed to provide a high voltage power line

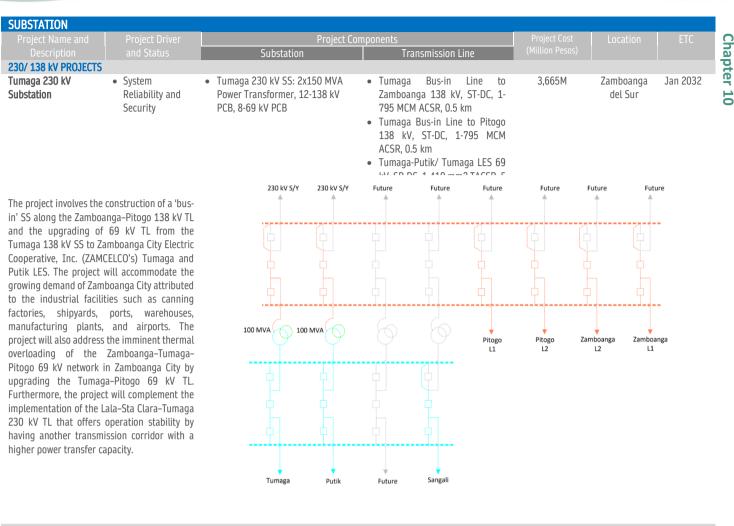
emanating from Lanao del Norte, which further improves the reliability of power transmission towards the Zamboanga Peninsula.

Several substation projects such as the Tigbao SS, Tumaga SS, and Malaybalay SS were also proposed during the horizon which will accommodate load demand requirements in these areas.

Table 10.2 List of Proposed Mindanao Transmission Projects for the period 2031-2040

TRANSMISSION LINE						
Project Name and Proje	ct Driver	Project Components			Location	ETC
Description and S	Status Substatio	on T	ransmission Line			
230 kV PROJECTS						
Bunawan-Tagum 230 • Generat kV Transmission Line • Load G • Filed to	Frowth Power Transforme	• Tagum	95 MCM ACSR, 45 km -Bunawan 138 kV Line on, ST-DC, 1-795 MCM	10,624.87M	Agusan del Sur, Davao del Norte, Davao de Oro	Mar 2031
The project aims to provide a new to corridor that mitigates the anticipa overloading of the Bunawan–Nabu Bunawan–Maco–Nabunturan 138 k an outage of one of the circuits. T kV transmission corridor acc generation entry in the area. In a 2x100 MVA transformer on Tag Substation accommodates the Asu Northern Davao Electric (NORDECO) which is currently co Nabunturan 138 kV Substation and the Maco–Tagum 69 kV Line of condition.	Ited thermal Inturan and INTL during the new 230 Isommodates Iddition, the Immu 230 kV Incion LES of Cooperative Innected to d reinforces	Line E MCM A • Tagum DC, 1-7 • Tagum Extensi ACSR, 0 • Magdu SP-SC, Tagum Nabuni	m–Asuncion 69 kV TL, 1-795 MCM ACSR, 17 km			


TRANSMISSION LINE Project Name and Project Driver Description and Status	Project Cor Substation	nponents Transmission Line	Project Cost (Million Pesos)	Location ETC
Maco Li C	Maco Nabunturar Nabunturan Trento 12 11 12 14 14	TACUM 138 KV		
 Eastern Mindanao 230 kV Transmission System System Reliability and Security The project extends the 230 kV backbone from Agusan del Norte to Agusan del Sur and from Davao del Sur to Davao de Oro to strengthen the transmission corridor in Eastern Mindanao that is currently in single-circuit 138 kV configuration. Also, this project anticipates the Competitive RE Zone in Agusan del Sur.	• Alegria 230 kV SS: 12-138 kV PCB • Trento 230 kV SS: 12-138 kV PCB	 Kinamlutan-Alegria-Trento- Tagum 230 kV TL, ST-DC, 2-795 MCM ACSR, 209 km Bislig-Trento 138 kV Line Extension, ST-DC, 1-795 MCM ACSR, 6 km. Alegria-San Francisco 138 kV Line Extension, SP-SC, 1-795 MCM ACSR, 0.8 km Tago-Alegria 138 kV Line Extension, SP-SC, 1-795 MCM ACSR, 0.8 km San Fancisco-Bislig 138 kV Line Bus-in to Trento SS, ST-SC, 1- 795 MCM ACSR, 2 km Bislig-Nabunturan 138 kV Line Bus-in to Trento Substation, ST- SC, 1-795 MCM ASR, 2.2 km 	41,839M	Agusan del Oct 2032 Sur, Agusan del Norte, Davao del Sur, Davao de Oro
 Villanueva- Kinamlutan 230 kV Transmission Line System Reliability and Security load Growth The project increases the power transfer capacity and provides a reliable transmission corridor serving Northeastern Mindanao. The new 230 kV line accommodates the anticipated load demand due to the progressive development triggered by the mining industries in Caraga Region. This project is complementary to the Eastern Mindanao 230 kV TL Project.		 Villanueva-Kinamlutan 230 kV TL: ST-DC, 2-795 MCM ACSR, 157.5 km Kinamlutan SS Bus-in to Nasipit-Butuan 138 kV Line 1: ST-DC, 1-795 MCM ACSR, 0.85 km Kinamlutan SS Bus-in to Nasipit-Butuan 138 kV Line 2: ST-DC, 1-795 MCM ACSR, 0.85 km Placer SS 138 kV Line Extension to Kinamlutan SS: ST-DC, 1-795 MCM ACSR, 0.7 km San Francisco SS 138 kV Line Extension to Kinamlutan SS: ST- DC, 1-795 MCM ACSR, 0.7 km 	23,512M	Misamis Jan 2033 Oriental, Agusan del Norte


X

X

K

XX

138/ 69 kV PROJECTS

Tigbao 138 kV • Load Growth Substation

The project aims to address the thermal overloading of the Aurora 138 kV SS by providing Zamboanga del Sur Electric Cooperative (ZAMSURECO I) another connection facility from the grid. The project accommodates the increasing demand in the area due to inherent overloading of the existing Aurora 138 kV SS during N-1 condition. Further, development inside the said SS is infeasible due to space restrictions.

Malaybalay 138 kV • Load Growth Substation

Malaybalay 138 kV SS: 2x100 MVA Power Transformer, 10-138 kV PCB, 5-69 kV PCB

• Tigbao 138 kV SS: 2 x 100 MVA

PCB, 6-69 kV PCB

Power Transformer, 10-138 kV

 Mataybatay BUS-III LITE U Manolo Fortich, 138 kV TL, ST-DC, 1-795 MCM ACSR, 0.5 km
 Malaybalay, Bus-in Line to

• Aurora-Naga Min 138 kV Line

795 MCM ACSR, 2-1.7 km.

AURORA BESS

100 MVA

Bus-in to Tigbao SS, ST-DC, 1-

AURORA 138 KV

100 MVA

AURORA 69 KV

• Malaybalay Bus-in Line to Maramag, 138 kV TL, ST-DC, 1-795 MCM ACSR, 0.5 km ∠,4/3M BUKIUIIUII

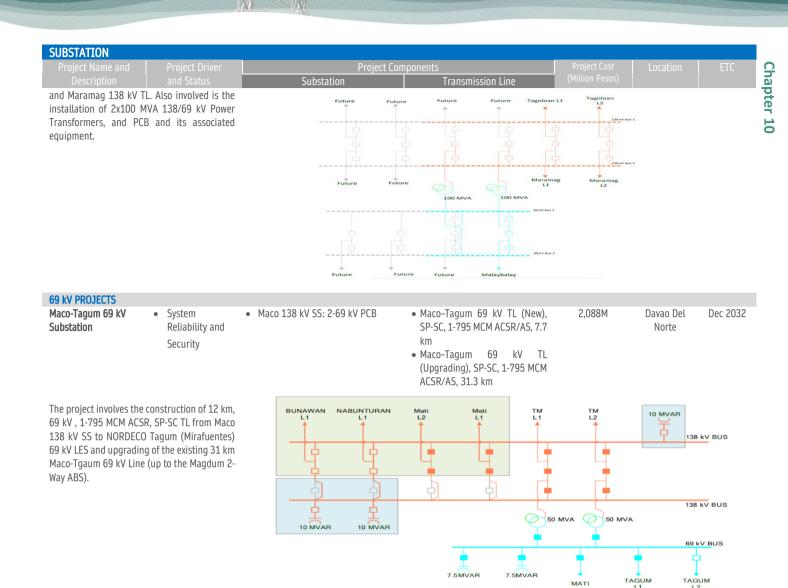
2.164M

LALA 138 KV

NAGA MIN 138 KV

Zamboanga

del Sur

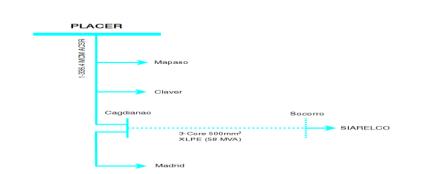

AG<mark>US 5 13</mark>8 KV

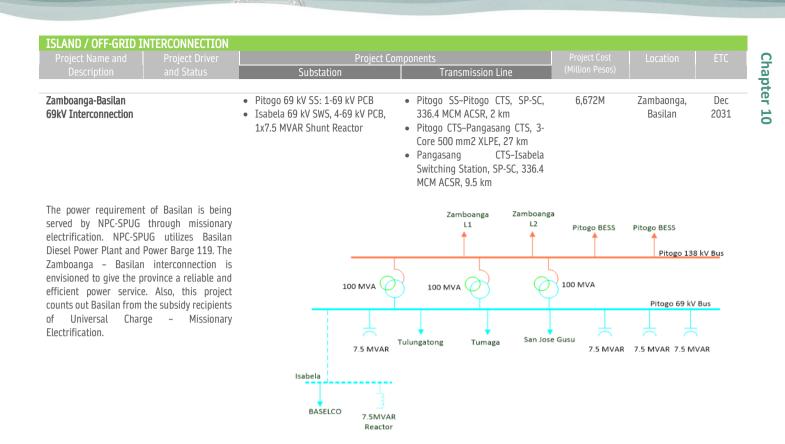
BALO-I 138 KV

Dec 2032

Sep 2032

The project involves the construction of 138 kV SS between Malaybalay City and Valencia City that will bus-in to the existing Manolo Fortich



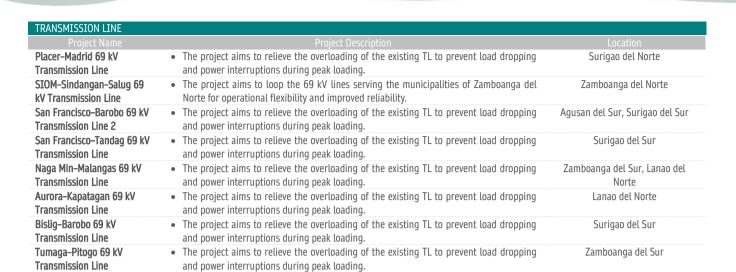

ISLAND / OFF-GRID I	NTERCONNECTION					
Project Name and	Project Driver	Project Com	Project Components		Location	
Description		Substation	Transmission Line			
69 kV PROJECTS						
Claver - Siargao 69 kV Interconnection		 Cagdianao 69 kV SWS (new), 5-69 kV PCB 	 Cagdianao-Socorro 69 kV Submarine Cable, 3-Core 500 	9,531M	Siargao, Surigao Del	Dec 2031
Interconnection		 Socorro 69 kV SWS (new), 7-69 kV 	mm2 XLPE. 22 km		Surigao Del Sur	2031

Siargao Electric Cooperative (SIARELCO) is currently connected to the Mindanao Grid thru tap connection of their 20 MVA Cagdianao SS to NGCP Placer - Madrid 69 kV line. Then, 34.5 kV energized submarine cables and overhead line link the island of Bucas Grande and Siargao. As tourism is booming in Siargao, the capacity of the existing power transformer in Cagdianao and 34.5 kV lines will not be sufficient to accommodate the increasing demand. This project aims to provide a 69 kV interconnection facility that increases the power transfer towards the islands and improve the voltage within the franchise area of SIARELCO.

PCB, x2.5 MVAR Shunt Capacitor

For additional proposed projects in Mindanao from the year 2031 to 2040, the Lala– Malabang–Sultan Kudarat 230 kV TL Project was identified to improve the reliability of transmitting power towards southwestern Mindanao. The project will create a looped system of high voltage power line emanating from Lanao del Norte.

In the long term, the installation of transformers in Matanao 230 kV SS will ensure adequate facility and improved voltage profile for the customers in Davao del Sur.


The identified grid expansion projects in Mindanao by 2040 mainly consider the anticipated demand load. The 230 kV transmission backbone network will be extended towards Zamboanga Sibugay, Davao de Oro, and Southwestern areas to improve system reliability. These high-voltage network expansion projects are the Matanao – Tacurong 230 kV TL and Culaman-Gen. Santos 230 kV TL. These transmission corridors complete the envisioned 230 kV loop system of the Mindanao Grid.

Expected development in new areas in Mindanao requires additional reinforcement of existing 69 kV transmission lines that provide more sustainable and reliable power supply delivery to their service areas. The reinforcement consists of upgrading the existing transmission facilities to a higher capacity which can be energized to a higher voltage level in the future.

Figure 10.3: Additional Proposed Mindanao Transmission Outlook for 2031-2040

Proiect Name	Project Description	Location
230 kV PROJECTS		
Lala-Malabang-Sultan Kudarat 230 kV Transmission Line	• The project aims to provide a new transmission corridor that will complete the 230 kV loop in the western part of Maguindanao Island. Also, it will ensure system reliability and operational flexibility in the province of Lanao del Sur and Maguindanao.	Lanao del Norte, Lanao del Sur, Maguindanao
Culaman-General Santos 230 V Transmission Line	 The project aims to provide a 230 kV transmission corridor towards General Santos City, South Cotabato. General Santos City is one of the major load centers in Mindanao and its demand will exceed the MW capacity of the embedded coal plants and the power flowing through Matanao-General Santos 138 kV TL. 	Davao Occidental, South Cotabato
Matanao–Tacurong 230 kV Fransmission Line L38 kV PROJECTS	• The project aims to directly connect the bulk generation of the Davao Region to the SS in southwestern Mindanao thru a new 230 kV corridor.	Davao del Sur, Sultan Kudarat
Naga Min–Salug 138 kV Fransmission Line	• The project aims to provide a high voltage transmission corridor towards the Municipality of Salug, Zamboanga del Norte for a more reliable and efficient energy supply.	Zamboanga Sibugay, Zamboanga del Norte
Bislig–Baganga 138 kV Fransmission Line	• The project aims to provide a high voltage transmission corridor towards the Municipality of Baganga, Davao Oriental for a more reliable and efficient energy supply.	Surigao del Sur, Davao Oriental
Baganga –Mati 138 kV Fransmission Line	• The project aims to loop the 138 kV backbone from the municipality of Baganga to the city of Mati, Davao, Oriental. This will provide a stable and reliable power supply of loads in Davao Oriental	Davao Oriental
59 kV PROJECTS		
Opol–Carmen 69 kV Fransmission Line	 The project aims to relieve the overloading of the existing TL to prevent load dropping and power interruptions during peak loading. 	Misamis Oriental
Davao-Toril 69 kV Transmission Line	 The project aims to relieve the overloading of the existing TL to prevent load dropping and power interruptions during peak loading. 	Davao del Sur
Agus 6-Kiwalan-Lugait 69 kV Transmission Line	 The existing Agus 6-Kiwalan-Lugait 69 kV TL, serving a rapidly increasing demand, has already reaching its full thermal capacity. The project aims to prevent imminent overloading which might entail load curtailment. Also, the additional load due to the possible outage of Agus6-Mapalad-Lugait 69 kV TL cannot be catered by Agus 6- Kiwalan-Lugait due to capacity constraints. 	Lanao del Norte, Misamis Oriental
Naga Min–Ipil 69 kV Transmission Line	• The project aims to relieve the overloading of the existing TL to prevent load dropping and power interruptions during peak loading.	Zamboanga Sibugay
Marawi-Malabang 69 kV Fransmission Line	 The project aims to relieve the overloading of the existing TL to prevent load dropping and power interruptions during peak loading. 	Lanao del Sur
Nabunturan–Monkayo 69 kV Transmission Line	• The project aims to relieve the overloading of the existing TL to prevent load dropping and power interruptions during peak loading.	Davao de Oro

SUBSTATION		
Project Name	Project Description	Location
230 kV PROJECTS Matanao 230/138 kV Transformer	• The project aims to interconnect the 230 kV and 138 kV switchyards of Matanao SS to avoid possible overloading of the existing transmission corridors towards the north of the Davao Region.	Davao del Sur
138 kV PROJECTS		
MindanaoS SS Expansion 5 Project (MSEP5)	 The project aims to cater the load growth and provide N-1 contingency to various SS in Mindanao. Without the project, the customers being served by these SS will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Various Substations in Mindanao
Mindanao Substaton Expansion 6 Project (MSEP6)	 The project aims to cater the load growth and provide N-1 contingency to various SS in NGCP's South Luzon Region. Without the project, the customers being served by these SS will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Various Substations in Mindanao
Mindanao Substaton Expansion 7 Project (MSEP7)	 The project aims to cater the load growth and provide N-1 contingency to various SS in NGCP's South Luzon Region. Without the project, the customers being served by these SS will experience load dropping and power interruptions during outage and failure of existing transformers and PCB. 	Various Substations in Mindanao
Midsayap 138 kV Substaton	• The project will support the load growth in North Cotabato and will help unload the Sultan Kudarat SS.	North Cotabato

ISLAND INTERCONNECTION

11.1 Island Off-Grid Interconnection

One of the challenges in improving the system reliability and reducing the reserve requirements without adding a new generation is the interconnection of two or more islands using an undersea cable. Major considerations in the implementation of such kind of project yield high reliability and long life of more than 30 years with minimal maintenance are the required investment. The Philippine archipelago with more than 7,100 islands, NGCP's concession is challenged and confronted to energize and interconnect its islands to the main grid. Equipped with vision of a fully interconnected and integrated power grid, and access to state-of-the-art technology, NGCP is well on its way towards this goal.

In pursuit of its goal of building One Grid, NGCP continues to embark on major interconnection projects to realize this vision. Upon completion of its goal, this will prepare the entire Philippine grid to integrate to the proposed ASEAN Power Grid, an era when the country can already share its power resources with the rest of Southeast Asian neighbors because of interconnected power transmission system.

11.1.1 Existing Island Interconnections

As of December 2022, the Philippines has seven major undersea island interconnection systems: six High Voltage Alternating Current (HVAC) and one High Voltage Direct Current (HVDC). These are the

- Leyte-Luzon ± 350 kV HVDC
- Leyte-Cebu 230 kV Interconnection
- Negros–Panay 138 kV and 230 kV Interconnection
- Cebu–Negros 138 kV Interconnection
- Leyte-Bohol 138 kV Interconnection
- Cebu–Lapu-Lapu 138 kV HVAC Interconnection
- Panay–Boracay 69 kV AC Interconnection facilities

The 432-km Leyte-Luzon \pm 350 kV HVDC, with a 23-km connecting Leyte Island (via Samar Island) to the Luzon Grid has been in operation since 1998. Its maximum transmission capacity is 440 MW with provision for upgrade to 880 MW through the implementation of Luzon-Visayas HVDC Bipolar Operation Project.

These are some of the salient benefits of island/off-grid interconnections:

- Provide additional power supply like a generator having the ability to import power when required.
- More efficient dispatch to meet demands across different grids while optimizing the most efficient generator.
- Reduce power curtailment by means of exporting power when there is surplus from one island to another: and
- Renewable and indigenous energy sources, such as wind, hydro and geothermal potential sites suitable for energy generation can be optimized, while providing clean and sustainable sources of energy that may become attractive for development by generation proponents.

Detailed studies should be undertaken to quantify the overall benefits to the receiving island. In the long run, considering these salient and many intangibles, benefits the island/off-grid interconnections will become more economically attractive.

The Leyte-Cebu interconnection is a 33-km double circuit 230 kV submarine cable, with a transfer capacity of about 400 MW. The first and second circuits were energized in 1997 and 2005, respectively. The double circuit Cebu-Negros Interconnection enables power-sharing of the maximum of 180 MW between Cebu and Negros Islands. Its first circuit of 18-km, 138 kV submarine cable was energized in 1993 while its second circuit was energized in 2007.From Negros Island, connected is the 18-km 138 kV Negros-Panay Interconnection, energized in 1990 with a rated capacity of 85 MW. In 2016, an additional 230 kV-designed submarine cable was installed between Negros and Panay.

Connecting the island of Mactan to mainland Cebu is the 8.5-km 200 MW capacity cable that was energized in 2005. It was laid underneath the Cebu-Mactan Bridge. Another island interconnection is the Leyte-Bohol Interconnection, a submarine cable that allows a maximum power flow of 90 MW to the island of Bohol since 2004.

Chapter 11

11.2 Transmission Backbone and Major Island Interconnection Projects

To ensure a transmission network that can support growth and competitive electricity prices, NGCP envisioned its goal of One Grid through the implementation of the Transmission Backbone and Major Island Interconnections. Guided by NGCP's vision to build the strongest power grid in Southeast Asia and contribute to the social and economic development of the country and to satisfy its stakeholders' needs. NGCP programmed a significant upgrade in its facilities to expand the transmission backbone to meet the forecasted demand, entry of new and various generating facilities that will allow market competition.

The creation of an interconnected Philippine Grid among the considerations, would create more open, liberalized

and competitive market. As the Luzon and the Visayas Grids are already interconnected, connecting the Visayas and Mindanao, Mindanao-based industry players can participate freely in Wholesale Electricity Spot Market.

Figure 11.1 and Figure 11.2 respectively show the development of transmission backbones and island interconnections as well as the existing and future Philippine network topology of an interconnected grid. While some segments of the transmission backbones are already programmed for implementation within the Fifth Regulatory Period (2021-2025), as discussed in Chapters 8, 9, and 10, other segments will still be subjected to a more thorough system analyses or even Feasibility Study for some big and more complicated backbone projects.



Figure 11.1 : Transmission Master Plan

Table 11.1 Transmission Backbone and Major Island Interconnections

Project Name	Project Description	Major Project Components	ETC
Bolo to Laoag 500 kV Backbone	 Composed of Bolo-Balaoan and Balaoan-Laoag 500 kV Transmission Lines that will traverse the provinces of Pangasinan, La Union, Ilocos Sur, and Ilocos Norte. This 500 kV Backbone is intended to support the entry of large generation capacities in La Union, Mountain Province, and Ilocos area. It also aims to address the anticipated overloading of the San Esteban-Laoag and San Esteban-Bakun/Bacnotan-Bauang 230 kV TL during N-1 contingency event. 	•	2034

Project Name	Project Description	Major Project Components	ETC	<u>ک</u>
Nagsaag to Kabugao 500 kV Backbone	 Composed of Nagsaag-Santiago and Santiago-Kabugao 500 kV TL that will traverse the provinces of Pangasinan, Isabela, Kalinga, and Apayao. This is to support the generation developments in Cagayan Valley and the Cordilleras. Furthermore, it also intends to augment and relieve the overloading of the Santiago- Bayombong and Bayombong-Ambuklao 230 kV TL. 		2031-2035	Chapter 11
Western Luzon 500 kV Backbone	 Subdivided in two stages: (a) Stage 1 is the construction of Castillejos-Hermosa 500 kV TL (initially energized at 230 kV), which provides a transmission facility to connect the Renewable Energy plants [MFL1] to the Luzon Grid through Hermosa Substation; and (b) Stage 2 is the construction of a 174 km DC 500 kV line from Bolo 500 kV SS to Castillejos. It will also involve the implementation of the Castillejos 500 kV SS to accommodate bulk generation capacities. The Western Luzon 500 kV Backbone will traverse the provinces of Pangasinan and Zambales. 		2025	
Metro Manila 500 kV Backbone Loop	 The development of Metro Manila 500 kV Backbone Loop involves the implementation of the Silang 500 kV SS, which will bus-in to the existing Dasmariñas-Tayabas 500 kV TL; the implementation of Taguig 500 kV SS, which will initially cut-in to the existing San Jose-Tayabas 500 kV TL; the construction of the Silang-Taguig 500 kV TL; and the development of the Baras 500 kV SS, which will bus-in to the existing San Jose-Taguig-Tayabas 500 kV TL. This forms the Silang-Taguig-Baras-Tayabas 500 kV Backbone Loop for Metro Manila. Another 500 kV Backbone Loop within Metro Manila will be developed through the Bataan-Cavite 500 kV TL Project. 		2034	
Batangas-Mindoro Interconnection	 The proposed interconnection of Mindoro Island with the Luzon Grid was envisioned to provide access to bulk generation sources in the main grid, while at the same time providing the means to export possible excess power once the generation potentials, including RE-based plants, within the island have been developed. The nearest connection point in the Luzon Grid for the planned island interconnection project is the proposed Pinamucan 500 kV SS, while Calapan would serve as the interconnection point in Mindoro Island but given the configuration of the island involving long 69 kV lines, in-land generators will still have to operate to provide voltage regulation support. In the long term, a 230 kV backbone system within the island could be developed as well as the future establishment of a loop to Panay Island thereby providing another corridor for the Luzon and Visayas link. 	 Pinamukan-Lobo CTS 230 kV TL, ST-DC 2-795 MCM ACSR, 37 km Lobo CTS-Mahal na Pangalan CTS 230 kV Submarine Cable, DC, 1-2,500 mm² XLPE, 25 km Mahal na Pangalan CTS-Calapan 230 kV Transmission Line, ST-DC 2-795 MCM ACSR, 6 km Pinamukan 230 kV Switchyard: 2-230 kV PCB, 2-30 MVAR 230 kV Line Reactors and associated equipment Calapan 230 kV SS: 2-100 MVA, 230/69-13.8 kV Power Transformers, 9-230 kV PCB, 3-25 MVAR 230 kV Shunt Reactor, 2-30 MVAR 230 kV Line Reactor and associated equipment 	2027	-
	The power system of Mindoro Island, which is composed of 69 kV lines connected to several power plants and various LES, is presently being operated by Small Power Utilities Group (SPUG) of the National Power Corporation (NPC). Power distribution to the consumers is handled by Oriental Mindoro Electric Cooperative (ORMECO) and Occidental Mindoro Electric Cooperative (OMECO). The major load center is in Calapan City in Oriental Mindoro and the total peak demand of the island in 2020 was more than 81.56 MW already, based on the combined total load of ORMECO and OMECO.	Figure 11.2: Batangas - Mindoro Interconnection	Coorde or n Project	
Luzon–Visayas HVDC Bipolar Operation	• The project will provide an additional 440 MW transfer capacity between Luzon and Visayas. It involves the construction of Naga 500 kV SS with 2x1000 MVA, 500/230-13.8 kV Power Transformers as well as upgrading of the Naga and Ormoc Converter/Inverter Stations in order to provide an additional transfer capacity between Luzon and Visayas. Upgrading of the 230 kV network between Cebu and Leyte is a requirement in order to fully utilize the transfer capacity of the Luzon-Visayas HVDC System.		2032	
Luzon-Visayas 230 kV AC interconnection Project	 Currently, Samar Island is highly dependent to Leyte due to the absence of generating power plants in the Island and since the existing Luzon-Visayas HVDC transmission system is terminated in Ormoc in Leyte. Isolation of Samar Island is possible in case of 	Substation: • Calbayog 230 kV SS: 2x70 MVAR 230 kV Line Reactor, 6-230 kV PCB and associated equipment	2040	

X

X

X

X

X)

Chapter 11

Matnog 230 kV SS (Expansion): 2x70 MVAR 230 kV Line Reactor, 4-230 kV PCB and associated equipment

Transmission Line:

- Allen CTS-Calbayog 230 kV TL, ST-DC, 4-795 MCM ACSR, 80 km
- Matnog-Sta. Magdalena CTS 230 kV TL, ST-DC, 4-795 MCM ACSR, 18 km

Submarine Cable:

- Sta. Magdalena CTS-Allen CTS 230 kV XLPE Submarine Cable, Double circuit with 600 MW transfer capacity per ckt, 23 km
- Allen CTS: Cable Sealing End
- Sta. Magdalena CTS: Cable Sealing End.

Figure 11.3: Leyte-Luzon Interconnection Project

Palawan-Mindoro Interconnection

With the envisioned interconnection of Mindoro Island to the Luzon Grid, the province of Palawan will be the next big island to be interconnected in terms of land area and energy demand. Presently, the power system of Palawan Island is composed of a 69 kV transmission corridor which stretches from Roxas in the north and extending down to Brooke's Point in the south with an estimated length of about 305 circuit-km. Based from 2018 record of the National Power Corporation (NPC), the main power grid of Palawan registered a peak load of 54 MW and being served by combination of bunker and diesel power plants with a dependable capacity of 73.7 MW.

troubles that occur in Leyte thus, resulting to power interruption

The Samar-Sorsogon AC Interconnection Project aims to provide

Samar Island an alternate power source. This will address the high dependency of Samar to Leyte. Two circuits of 230 kV submarine

cable with a transfer capacity of 600 MW per circuit will be laid

connecting Sorsogon to Samar. Shown below are the major

of Sorsogon. This will provide operational flexibility for the loads

in Samar. Operationally, some substations in Samar will normally

By interconnecting the existing Palawan grid into the Luzon grid via Mindoro Island, the current energy mix of the province, which is mainly oil-based, is seen to deviate from conventional sources in the forthcoming years. This is due to the projected entry of renewable energy power plants in which Palawan has high potential. A reliable transmission backbone and an opportunity to export power to the main grid will encourage the development of more renewable power plants in the provi nce.

To interconnect Palawan to the Luzon Grid, NGCP will be implementing a stage-by-stage project development.

- Stage 1 will include the Desktop, System and Feasibility Studies, and Hydrographic Survey of the submarine cable route of the Palawan-Mindoro Interconnection Project (PMIP). It will also include the preparation of the Mindoro Backbone through the development of Calapan-San Jose 230 kV TL Backbone and San Jose 230 kV SS in Occidental Mindoro; and
- Stage 2 will involve the implementation of the PMIP. It will
 utilize HVDC transmission system from San Jose Converter
 Station in Occidental Mindoro to Roxas Converter Station in
 Palawan. The power supply from the Luzon Grid will then be
 delivered to the proposed drawdown substations in Roxas, EL
 Nido, and Irawan through the 230 kV HVAC system. This
 interconnection project aims to provide the Mainland
 Palawan with a more reliable supply of power and to address

- Desktop, System and Feasibility Studies and 2033 Hydrographic Survey of the Mindoro-Palawan Interconnection
- Calapan–San Jose 230 kV TL, ST-DC 2-795 MCM ACSR, 154 km
- Calapan 230 kV SS: 4-230 kV PCB and associated equipment
- San Jose 230 kV SS: 2x100 MVA 230/69 kV Power Transformer, 6-230 kV PCB and associated equipment, 6-69 kV PCB and associated equipment, 2x25 MVAR 230 kV Shunt Reactor and associated equipment

Figure 11.4: Palawan-Mindoro Interconnection Project

components of the project. This project will be pursued when the Luzon 230 kV backbone is already extended to the Northern part

draw supply from Sorsogon.

in the island.

Project Descriptio

the power quality issues, which result to frequent power interruptions.

This Palawan-Mindoro Interconnection Project will also prepare the country for interconnection with other ASEAN member states as envisaged in the ASEAN Power Grid under the Heads of ASEAN Power Utilities/Authorities or the regional initiatives for power grid interconnection being done by the Brunei Darussalam-Indonesia-Malaysia-Philippines East ASEAN Growth Area.

Figure 11.5: Palawan - Mindoro Hydrographic Survey

Mindoro–Panay 230 kV Interconnection Project The Project creates a new interconnection between Luzon and Visayas Grids via Mindoro Island in the western region of the Philippines. It increases the power transfer capability of the system as this new transmission corridor accommodates the power generation in Luzon and Visayas especially power plants that are located within Competitive Renewable Energy Zones.

Figure 11.6: Mindoro-Panay 230kV Interconnection Project

Cebu-Negros-Panay 230 kV Backbone	•	 The projecy involves the construction of a 230 kV transmission backbone between the Cebu, Negros and Panay Islands. It will augment the transfer capacity of the existing corridor which will support the transmission of excess power generation in Negros and Panay Islands toward the rest of the Philippine Grid. The project is subdivided into three (3) stages: Stage 1 involves the development of transmission corridor composed of submarine cable system and overhead TL from Barotac Viejo SS in Panay to Bacolod SS in Negros; Stage 2 involves the construction of 230 kV facilities in the existing Cebu 138 kV SS and harmonize its capacity with the 230 kV transmission backbone; and Stage 3 involves the construction of 230 kV facilities from Barotac Viejo SS to Cebu SS.
Metro Cebu 230 kV Backbone Loop	•	The project aims to pool the excess power resources from Negros, Panay and Mindanao and transmit it to the main load center in Metro Cebu. It involves the construction of several 230 kV transmission corridors and 230 kV drawdown substations with adequate capacities to facilitate the power absorption by the load- end customers. This long-term plan is the basis of the transmission projects in Metro Cebu spread within the 2040 planning horizon namely: • Cebu-Laou-Laou Transmission Project

2036-2040

- Substation: San Jose 230 kV SS: 2x70 MVAR 230 kV Line Reactors,6-230 kV PCB and associated equipment
 - Unidos 230 kV SS: 2x70 MVAR 230 kV Line Reactors, 6-230 kV PCB and associated equipment

Transmission Line:

- San Jose SS-Bulalacao CTS 230 kV TL ST-DC, 4-795 MCM ACSR, 15 km
- Buruanga CTS-Unidos SS 230 kV TL, ST-DC, 4-795 MCM ACSR, 22.5 km

Submarince Cable:

- Bulalacao CTS-Buruanga CTS 230 kV XLPE Submarine Cable, Double circuit with 600 MW transfer capacity per ckt, 75 km
- Bulalacao CTS: Cable Sealing End
- Buruanga CTS: Cable Sealing End

2023

2023-2040

Product Name Project Deportation Adjar Project Components Opport • Color Negros-Paray 20 Will Activate Project Strange 2 and 3 • Mindras-Project Entrange Color Project MWIP • Color Negros-Paray 20 Will Activate Project Strange 2 and 3 Will Recommend the Project 1 • Project Department on Project WWIP • Large 200 Will Depart 200 Will Recommend the Project 1 • Express/Department on Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 200 Will Recommend the Project 1 • Department on Project 1 Department on Project 1 • Department on					
230 KV Backbone backbone between the Cebu, Bohel and Leyte Slands. It increasess the reliability the current transmission system by constructing several. 230 KV facilities and to distribute the excess power generation from Negres, Panay and Mindona toward power customers in Biohol, Leyte and Smarr. This (ong term plan is the basis of the transmission project . Eable-Bohel 230 KV IL Project . Babatingon-Plan 220 KV IL Project . Palo-Sogid 230 KV IL Project . Palo-Sogid 230 KV IL Project . Babatingon-Plan 220 KV Backbone 2031-2035 Negres-Folimans- Pang 230 KV Backbone This project will involve the laying of double circuit submarine cables from Negros to Guimars and to Panay. This is to ensure to accommodate the sporming generation uncel CER 1 in the arcs of the transmission projects in Metro Cebu generation uncel CER 1 in the arcs . Eabler Strom Negros to Guimars and to Panay. This is to ensure to accommodate the sporming generation uncel CER 1 in the arcs . Bandrak UBA Panay. This is to ensure to accommodate the sporming generation uncel CER 1 in the arcs . Bandrak UBA Panay. This is to ensure to accommodate the sporming 230 KV Transmission Line Project . Negres-Guimara-Panay 230 KV Transmission Line Project . Negres-Guimara-Panay 230 KV Transmission Line Project . Lastraw-Granda 230 KV Transmission Line Project . Negres-Guimara-Panay 230 KV Transmission Line Project . Negres-Guimara-Panay 230 KV Transmission Line Project . Negres-Guimara-Panay 230 KV More Context . Calatraw-Granda 230 KV Transmission Line Project . Negres-Guimara-Panay 230 KV More Context . The Mindanao Visagas Interconnection Project Was previously from enviro Standaw CTG, Spannder CTS, S	Project Name	 Cebu-Negros-Panay 230 kV Backbone Project Stages 2 and 3 Mindanao-Visayas Interconnection Project (MVIP) Laray 230 kV Substation Project (Initially energized at 138 kV) Lapu-Lapu 230 kV Substation Project Laray-Alpaco 230 kV Energization Project Laray-Cordova 230 kV Interconnection Project 	Major Project Components	ETC	Chapter 11
Paray 230 kV Backtone cables from Negros to Guimaras and to Panay. This is to ensure to accommodate the upcoming generation under CREZ in the area of Negros, Panay and Guimaras. This will also provide reliability to the Negros-Change information andlets: Barotac Viejo-Sta. Barbara 230 kV Transmission Line Project Barotac Viejo-Sta. Barbara 230 kV Transmission Line Project Calatrava-Granada 230 kV Transmission Line Project As part of the government's vision to interconnection Calatrava-Granada 230 kV Transmission Line Project Submarine Cable Submarine Cable Saturator Viejo-Sta. Barbara 230 kV Transmission Line Project Mindanao-Visayas As part of the government's vision to interconnection project is inteaded to help improve the overall power supply security in the country by optimizing the use of available energy resources and additional generation capacities of the major grids through sharing or reserves from one grid to another. The Mindanao Visayas Interconnection Project (VMIP). The change to MVIP indicates the importance and prioritory given to Mindanao Grid which has long been isolated. Luzon and the Visayas Grids have already been interconnected since 2006 and 2006, respectively. The name MVIP indicates the implementation of MVIP are due to Mindanao Grid. Dariang of system reserve Lesser investment in power generation in eiter the Visaya or Mindanao to maintain the one-day Loss of Luaos or Mindanao to maintain the one-day Loss of Luaos or Mindanao to maintain the one-day Loss of Luaos Probability (LOLP) Datancy of S-Alegrida ES: 20 KV OHTL (2 Lines), 20 Km, 2		 backbone between the Cebu, Bohol and Leyte Islands. It increases the reliability the current transmission system by constructing several 230 kV facilities and to distribute the excess power generation from Negros, Panay and Mindanao toward power customers in Bohol, Leyte and Samar. This long-term plan is the basis of the transmission projects in Cebu, Bohol and Leyte spread within the 2040 planning horizon namely: Cebu-Bohol 230 kV Interconnection Project Babatngon-Palo 230 kV TL Project Cebu-Leyte 230 kV Interconnection Lines 3 and 4 Project Maasin-Sogod 230 kV TL Project 		2024-2035	
Interconnectioninto a single national grid, this interconnection project is intended to help improve the overall power supply security in the country by optimizing the use of available energy resources and additional generation capacities of the major grids through sharing of reserves from one grid to another. The Mindanao-Visayas Interconnection Project (WIP). The change to MVIP indicates the importance and priority given to Mindanao Grid which has long been isolated. Luzon and the Visayas Grids have already been interconnected since 1998 and with the electricity market in operation since 2006 and 2008, respectively. The name MVIP indicates further support to boost the development of the country's electricity market to include the Mindanao Grid.Overhead DC Transmission Lines: Dumanjug CS-Santander CTS (Visayas Side): 73 km, 4350 kV HVDC OHTL, Bipolar, 3-795 MCM ACSR CondorDapitan CTS, 92 km, 4230 kV HVDC, Bipolar, 1,500 mm² HVDC Mass Impregnated (MI) submarine cable.Overhead DC Transmission Lines: Dumanjug CS-Santander CTS (Visayas Side): 73 km, 4350 kV HVDC OHTL, Bipolar, 3-795 MCM ACSR CondorDapitan CTS, 92 km, 4230 kV, ST-DC, 4-795 MCM ACSR or Mindanao Grid.Overhead AC Transmission Lines: Dumanjug CS-Magdugo Substation: 52 km, 230 kV, ST-DC, 4-795 MCM ACSR Outro L1, 138 kV, ST-DC, 1-795 MCM ACSR, 2x8 km Electrode Line Stations:Electrode Line Stations: O Lace S-Rolambugan ES: 20 kV OHTL (2 Lines), 20 km, 2-795 MCM ACSR Condor. Dumanjug CS-Alegria ES: 20 kV OHTL (2 Lines), 20 km, 2-795 MCM ACSR Condor. Dumanjug CS-Menti ACSR Condor. Converter Stations (Conventional Bipolar):	Panay 230 kV	 cables from Negros to Guimaras and to Panay. This is to ensure to accommodate the upcoming generation under CREZ in the area of Negros, Panay and Guimaras. This will also provide reliability to the Negros-Panay interconnection. This long-term plan is the basis of the transmission projects in Metro Cebu spread within the 2040 planning horizon namely: Barotac Viejo-Sta. Barbara 230 kV Transmission Line Project Negros-Guimaras-Panay 230 kV Interconnection 		2031-2035	
		 into a single national grid, this interconnection project is intended to help improve the overall power supply security in the country by optimizing the use of available energy resources and additional generation capacities of the major grids through sharing of reserves from one grid to another. The Mindanao-Visayas Interconnection Project was previously known as Visayas-Mindanao Interconnection Project (VMIP). The change to MVIP indicates the importance and priority given to Mindanao Grid which has long been isolated. Luzon and the Visayas Grids have already been interconnected since 1998 and with the electricity market in operation since 2006 and 2008, respectively. The name MVIP indicates further support to boost the development of the country's electricity market to include the Mindanao Grid. The tangible benefits in terms of reduced investments in power generation due to the implementation of MVIP are due to the following: Sharing of system reserve Lesser investment in power generation in either the Visayas or Mindanao to maintain the one-day Loss of Load 	 Santander CTS-Dapitan CTS, 92 km, ±350 kV HVDC, Bipolar, 1,500 mm² HVDC Mass Impregnated (MI) submarine cable. <u>Overhead DC Transmission Lines</u>: Dumanjug CS-Santander CTS (Visayas Side): 73 km, ±350 kV HVDC OHTL, Bipolar, 3-795 MCM ACSR Condor Dapitan CTS (Mindanao Side)-Lala CS: 138 km, ±350 kV HVDC OHTL, Bipolar, 3-795 MCM ACSR Condor Dapitan CTS (Mindanao Side)-Lala CS: 138 km, ±350 kV HVDC OHTL, Bipolar, 3-795 MCM ACSR Condor Overhead AC Transmission Lines: Dumanjug CS-Magdugo Substation: 52 km, 230 kV, ST-DC, 4-795 MCM ACSR Bus-in of Dumanjug to Colon-Samboan 138 kV OHTL, 138 kV, ST-DC, 1-795 MCM ACSR, 2x8 km	2023	

X

X

X

X

	<text><list-item></list-item></text>	 Power Transformer: 2x150 M kV Power Transformers, 2x13.8 kV Power Transformers PCB: 14-230 kV PCB and associate kV PCB and associated equip Lala Converter Station: Thyristor Valves: 2x225 MW water cooled, air insulated, 12-pulse single phase quadra Converter Transformers: 2x AC/350 kV DC, single phase a Power Transformer: 3x150 M kV Power Transformer: 3x150 M kV Power Transformer and ac PCB: 8-230 kV PCB and associated equipment. Umapad GIS SS (New): 2x300 kV PCB (GIS), 9-69 kV PCB (G equipment. Magdugo SS (Expansion): 2 associated equipment Other Equipment/Facilities in the result of GIS, e.g., pow equipment, etc.
Mindanao 230 kV Transmission Backbone	• This project mainly concentrates on strengthening the existing transmission backbone in Mindanao. As a major transmission highway that delivers both renewable and conventional energies to load centers, it ensures the stability, reliability, and efficiency of power supply in the island. While the existing 138 kV transmission backbone is already inadequate to accommodate the increasing capacity from the new power plants, the energization of the project to 230 kV level increases the thermal capacity of the existing line allowing the transfer of huge power capacity coming from north or south of the island.	
Western Mindanao 230 kV Backbone	• The project completes the envisioned 230 kV transmission extension and looping at the western side of the island. It	
		//////

• Reduction of operating cost due to economic dispatch of

• Attractiveness of MVIP to power generation investments

due to the bigger market through an interconnected power

The intangible benefits in the implementation of MVIP:

generators

network;

- Thyristor Valves: 2x225 MW, 350 kV, 750 A, water cooled, air insulated, suspended, indoor 12-pulse single phase quadruple
- Converter Transformers: 2x225 MW, 230 kV AC/350 kV DC, single phase and three -winding
- Power Transformer: 2x150 MVA, 230/138-13.8 kV Power Transformers, 2x100 MVA 138/69s and accessories
- sociated equipment, ted equipment, 5-69 ipment
- 1W, 350 kV, 750 A, suspended, indoor druple
- 2x225 MW, 230 kV and three-winding
- MVA, 230/138-13.8 accessories
- ociated equipment
- 00 MVA, 230/69-13.8 d accessories, 9-230 (GIS) and associated
- 2-230 kV PCB and
- identified based on ower compensating

Configuration of MVIP

Completed

2035

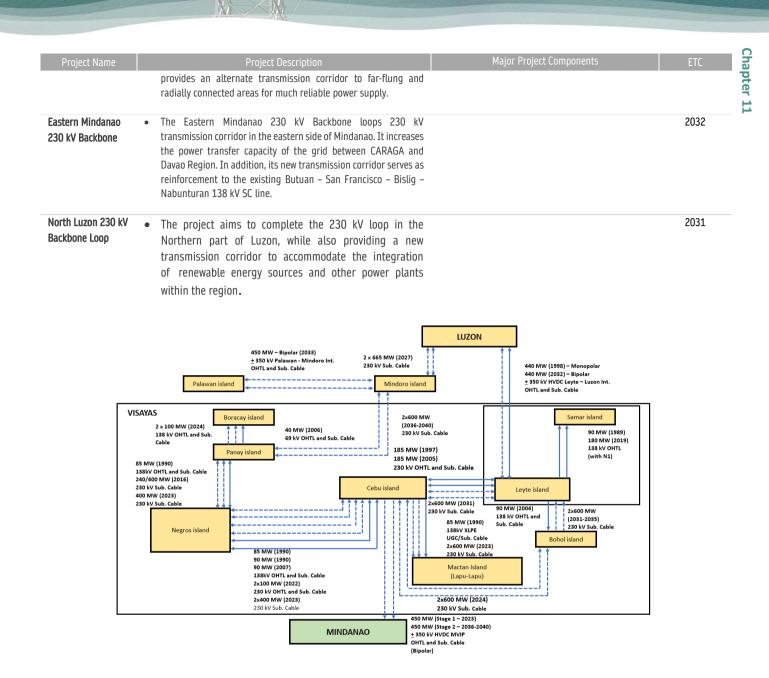


Figure 11.8: Existing and Future Philippine Network Topology

11.3 Small Island/Off-Grid Interconnection

As part of the country's power transmission infrastructure development, the DOE published in February 2019 the Department Circular No. DC2019-01-001 entitled, "Prescribing the Omnibus Guidelines on Enhancement of Off-Grid Power Development and Operation" with the following objectives:

- Improve the reliability and adequacy of power supply
- Reduce power rates
- · Lead to the graduation of UC-ME subsidy

NGCP through its endeavor will undertake the conduct and overall due diligence to shortlist island/off-grid areas to be interconnected to the grid and document a Techno-Economic Feasibility Study (Techno-Eco FS) for the shortlisted island/off-grid areas. Further, NGCP will submit an annual program for the interconnection of off-grid areas to the network that will be included in project prioritization and annual updating of the TDP in compliance to Rule 9 of the said DOE Circular.

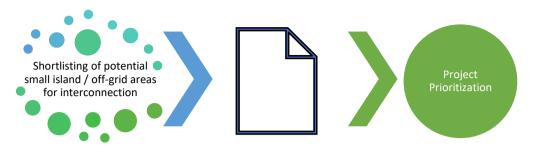


Figure 11.9: Small Island / Off-Grid Prioritization Process

Table 11.2 Small Island / Off-grid Interconnection

Project Name	Staus	Project Description	Major Project Components	ETC
Quezon - Marinduque 69kV Interconnection (QMIP)	PITOGO GEN. LUNA CTS GEN. LUNA CTS GEN. LUNA CTS	 The proposed QMIP aims to address the expected long-term development in the island province of Marinduque. This project enables the province to have access to a more reliable and competitive generation sources in the Luzon Grid. In addition, the current energy mix in the province, which is mainly oil-based, is seen to improve due to the access of power supply from various generation sources in the Luzon Grid. 	 <u>Substation:</u> Gumaca 230 kV SS: 2x300 MVA Power Transformers and 13-69 kV PCB and associated equipment General Luna Switching Station: 11-69 kV PCB and associated equipment Sta. Cruz Switching Station: 2x2.5 MVAR Line Reactors and 7-69 kV PCB and associated equipment Gasan 69 kV Load End SS: 4x2.5 MVAR Shunt Capacitors and 4-69 kV PCB and associated equipment <u>Transmission Line:</u> General Luna-General Luna CTS 69 kV Transmission Line, ST-SC, 1-795 MCM ACSR, 1.5 km Sta. Cruz-Sta. Cruz CTS 69 kV TL, ST-SC, 1-795 MCM ACSR, 9 km Gumaca-General Luna 69 kV TL, ST-DC, 1-795 MCM ACSR, 37.5 km <u>Submarine Cable:</u> General Luna CTS-Sta. Cruz CTS 69 kV XLPE Submarine Cable, 3-Core 500 mm², 22 km 	Dec 2030
GAMANDENANTIA	Des son TORRAOS Mage Lance / Court	Google Earth	ezon-Marinduque Interconnection Project	
Camarines Sur – Catanduanes 69kV		• The CCIP aims to link the Catanduanes Island	Substation:	Dec 2030
Interconnection (CCIP)		to the Luzon Grid and provide Catanduanes access to a more reliable and competitive generation sources.	 Naga 69 kV S/S, 2-69 kV PCB Presentacion 69 kV Switching Station, 3x2.5 MVAR 69 kV Capacitor, 3x2.5 MVAR 69 kV Shunt Reactor, 12-69 kV PCB 	
		Presently, the island of Catanduanes is being served by the First Catanduanes Electric	 San Andres 69 kV Switching Station, 1x5 MVAR 69 kV Line Reactor, 6-69 kV PCB 	

Cooperative, Inc. (FICELCO). On the other hand,

the transmission system is being supervised by

the NPC. The island's transmission system has

a total existing line length of 47.0 circuit-

kilometers and an existing SS capacity of 20

MVA.

 Marinawa 69 kV SS, 3x5 MVAR 69 kV Capacitor, 3-69 kV PCB

Transmission Line:

- Naga-Presentacion 230 kV Line, ST-DC, 1-795 MCM ACSR, 70 km
- Presentacion-Bitaogan CTS 69 kV Line, ST-SC, 1-795 MCM ACSR, 12 km
- Asgad CTS-San Andres 69 kV Line, ST-SC, 1-795 MCM ACSR, 1 km

Submarine Cable:

 Bitaogan CTS-Asgad CTS 69 kV Line, SC, 3 Core 500 mm² XLPE Submarine Cable, 23 km

Chapter 11

Project Name	Staus	Project Description	Major Project Components ETC
	I kV enrijadi) (7 ibin LAGONOV PRESENT	Magner CH BAP RE Magner CH BA	Figure 11.11 : Camarines Sur – Catanduanes Interconnection Project
Claver - Siargao 69kV Interconnection		 Siargao Electric Cooperative (SIARELCO) is currently connected to the Mindanao Grid thru tap connection of their 20 MVA Cagdianao Substation to NGCP Placer - Madrid 69 kV line. Then, 34.5 kV energized submarine cables and overhead line link the island of Bucas Grande and Siargao. As tourism is booming in Siargao, the capacity of the existing power transformer in Cagdianao and 34.5 kV lines will not be sufficient to accommodate the increasing demand. This project aims to provide a 69 kV interconnection facility that increases the power transfer towards the islands and improve the voltage within the franchise area of SIARELCO. 	Dec 2031
Zamboanga-Basilan 69KV Interconnection		• The power requirement of Basilan is being served by NPC-SPUG through missionary electrification. NPC-SPUG utilizes Basilan Diesel Power Plant and Power Barge 119. The Zamboanga – Basilan interconnection is envisioned to give the province a reliable and efficient power service. Also, this project counts out Basilan from the subsidy recipients of Universal Charge – Missionary Electrification.	Dec 2031

11.4 Potential Small Island Interconnections

A significant number of islands and far-flung areas in the country remain isolated from the main grids. These are classified as off-grid areas and the power systems in these areas are being operated and managed by NPC-SPUG. Some of these small islands were initially considered for further assessment. Shown in Table 11.3 below are the potential small island interconnections A significant number of islands and far-flung areas in the country remain isolated from the main grids. These are

classified as off-grid areas and the power systems in these areas are being operated and managed by NPC-SPUG. Some of these small islands were initially considered for further assessment. Shown in Table 11.3 below are the potential small island interconnections indicating the length of the required facilities. Further details for the potential small island interconnection and other small island and off-grid areas will be discussed on the succeeding TDP issuance: Chapter 11

Table 11.3 Potential Small Island Interconnections

Teland	Interconnection Doint	Length (km)		
Island	Interconnection Point	Submarine	Overhead	Total
LUZON				
Ticao	Abuyog	20	35	55
Masbate	San Jacinto	16	16	32
Tablas	San Jose	61	36	97
Lubang	Calaca	54	20	74
Busuanga	San Jose	84	52	136
VISAYAS				
Bantayan	Medellin	21	24	45
Siquijor	Bacong	20	24	44
Camotes	Isabel	18	8	26
Semirara	San Jose	33	0	33
MINDANAO				
Dinagat	Canlanipa	30	15	45
Camiguin	Esperanza	30	37	67
Siasi	Parang	43	32	75
Sulu	Taberlongan	100	34	134
Tawi-Tawi	Pagatpat	84	60	144

OPERATION AND MAINTENANCE PROGRAM

NGCP has the mandate to maintain, operate, expand, and improve the high voltage backbone transmission system and facilities throughout the Philippines. This chapter contains the operation and maintenance Capital Expenditures (CAPEX) programs for the years 2022 to 2040 with the objective of increasing the reliability of the Grid and improving the transmission system and facilities throughout the country for reliable, adequate, secure, and stable service for all users of the nationwide electricity transmission system.

NGCP has an estimated total of around 159,596 operational assets⁷. These assets vary from substation primary equipment, protection relays, secondary devices to transmission line towers and other structures. To evaluate the condition of these assets, proper asset management must be observed.

12.1 CAPEX Program

With the goal of meeting the Performance Incentive Scheme (PIS) targets set forth by ERC, several O&M

12.1.1 Substation Reliability Program

This program covers acquisition, installation, and replacement works for HVE, protection, and secondary devices, substation upgrading/automation, and operation resiliency plans to ensure the reliable operation of the power grid. The prioritization of every equipment is dependent on planning criteria on Asset health index, as well as its risk assessment of the equipment discussed in Chapter 4.

Program Scope

Ensuring the reliability of substation based on the planning criteria requires specific programs that will facilitate the

The 19-year operation and maintenance program cover the major categories of expenditures enumerated below:

- Installation, replacement, rehabilitation and relocation of HVE.
- Acquisition, Installation and replacement of Protection and Secondary Devices.
- Rehabilitation of Transmission Lines and Subtransmission Lines which were not divested.
- Acquisition and replacement of Test & Measuring Equipment, Maintenance Tools and Maintenance Vehicles
- Acquisition of Spares for HVE, Transmission Lines, and Secondary Device.
- Construction and rehabilitation of Substation and Support Facilities that include projects to:
 - Control and mitigate the effects of Fire and Flood
 - Preserve and Protect the Environment
 - Resiliency Projects

projects will be implemented through CAPEX programs. These programs will also be filed to ERC for each regulatory period.

In addition, with the DOE's initiative on the adoption of Resiliency Planning and Program in the Energy Industry, NGCP has identified and proposed risk reduction programs to ensure the reliable operation of the grid during times of disastrous events. Furthermore, the foreseen adverse effects brought by disasters will be addressed in the most timely and efficient manner.

replacement/ installation/ acquiring of the following equipment:

a. Replacement of Substation High Voltage Equipment

⁷ as of August 2021

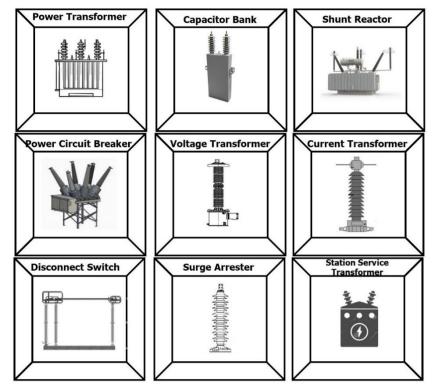


Figure 12.1 High Voltage Equipment Components

b. Replacement of Protection and Secondary Devices

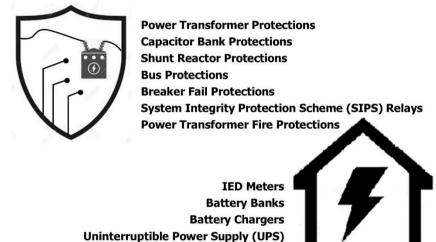


Figure 12.2 Protection and Secondary Devices Components

Back-up Generator Set

c. Substation Automation Program

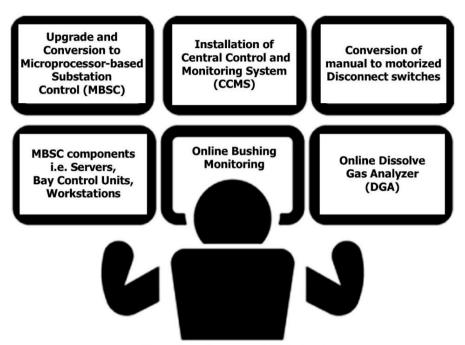


Figure 12.3 Substation Automation Program Components

d. Resilient Operation

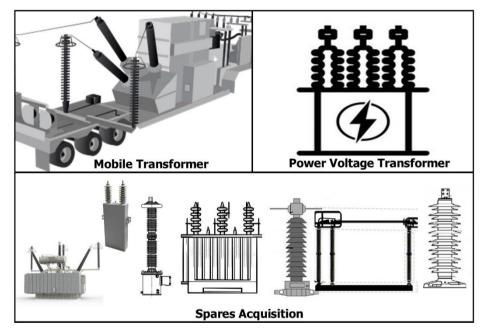


Figure 12.4 Resilient Operation Components

These projects will extend within the next 19 years. The project has a total estimated cost of 34.019 Bn.

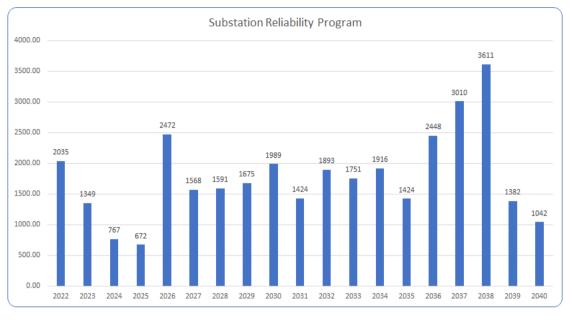


Figure 12.5 Substation Reliability Program Disbursement (in Mn Php)

12.1.2 Transmission Line Reliability Program

These projects include replacement of line-associated HVE, secondary devices and other accessories that are classified as transmission assets. All Transmission Lines which are subject to maintenance will require a shutdown schedule, and materials dependent on the type of projects.

NGCP has identified transmission lines assets that needs necessary and requiring rehabilitation works to include major works such as replacement of steel pole, crossarms, insulator, conductor and OHGW, etc. due to period of service, natural wear and tear and exposure to harsh environment.

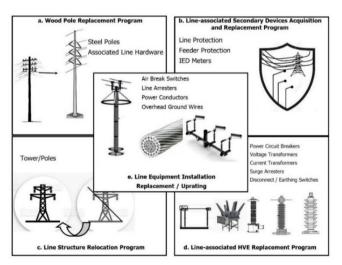


Figure 12.6 Transmission Line Reliability Program Components

These projects will extend within the next 19 years. The project has a total estimated cost of 17.223 Bn.

Figure 12.7 Transmission Line Reliability Program Disbursement (in Mn Php)

12.1.3 Sub-transmission Line Reliability Program

These projects include acquisition, installation and replacement of associated high voltage equipment, secondary devices and other accessories that are classified as sub-transmission assets. Sub-transmission Assets which are subject to maintenance will require shutdown schedule, and materials dependent on the type of projects. NGCP has identified sub-transmission assets that requires installation / replacement plans due to prolonged period of service, natural wear and tear and exposure to harsh environment and compliance to safety and environmental mandate.



Figure 12.8: Sub-transmission Line Reliability Program Components

These projects will extend within the next 19 years. The project has a total estimated cost of 7.433 Bn

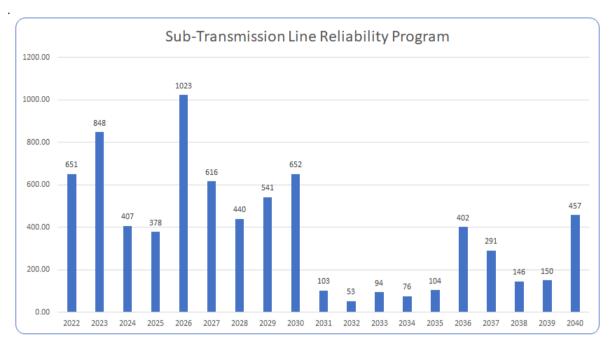


Figure 12.9: Sub-transmission Line Reliability Program Disbursement (in Mn Php)

12.1.4 Tools and Equipment Program

In accordance with the standard test for all equipment, the following group of test equipment are being replaced & augmented:

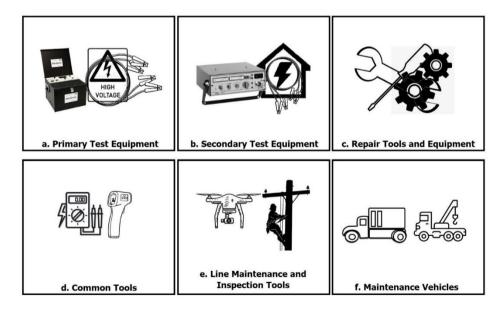


Figure 12.10 Tools and Equipment Program Components

These projects will extend within the next 19 years. The project has a total estimated cost of 7.151 Bn.

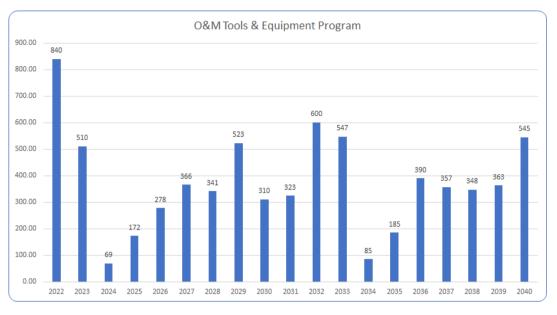


Figure 12.11 Tools and Equipment Program Disbursement (in Mn Php)

12.1.5 Network Facility Improvement Program

Most of the NGCP facilities and buildings were constructed several decades ago. Security and safety standards were different back then. To comply with the IMS Certification, additional security and safety standards must be implemented.

Also, from the time that NGCP took over the operation of the transmission network, additional equipment is utilized to cope up with the fast-technological advancements in the field which require additional facilities or extension of existing buildings for proper storage and also to provide the personnel with good working environment.

In addition to these improvements, NGCP must construct facilities to comply with environmental standards, regulations and practices under Philippine Environmental Laws and Regulations, and NGCP's Integrated Management System (IMS) such as oil catch basin, water separator for generator set, transformers, station service and shunt reactors, hazardous waste storage facilities, etc.

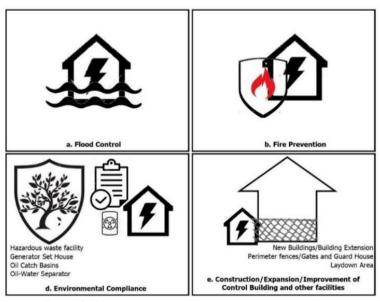


Figure 12.12 Network Facility Improvement Program Components

.

These projects will extend within the next 19 years. The project has a total estimated cost of 0.818 Bn.

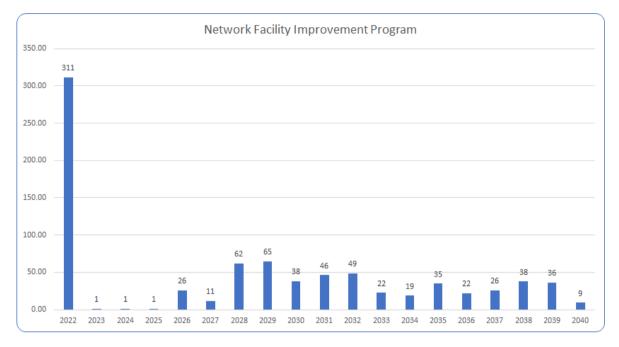


Figure 12.13 Network Facility Improvement Program Disbursement (in Mn Php)

12.1.6 Summary of 2022 - 2040 CAPEX Budget Requirements

The estimated CAPEX Budget for the TDP 2022-2040 is shown in Table 12.1

Table 12.1: Summar	/ of CAPEX Cost 2023-2040,	in Million (PhP)
--------------------	----------------------------	------------------

TDP 2023-2040 O&M PROJECTS	Asset Replacement	Compliance to Standards	Technology Installation	Maintenance Equipment	Resilient Operation	TOTAL
Substation Reliability Program	16,666.01	1,831.44	2,403.97	-	7,856.78	28,758.20
Transmission Line Reliability Program	8,149.96	2,486.92	415.73	-	2,670.00	13,722.61
Sub-transmission Line Reliability Program	2,687.13	1,119.93	20.40	-	18.37	3,845.83
Improvement of Substation Facilities and Non-Network Assets Program	3.05	1,288.60	-	-	141.15	1,432.80
Tools & Equipment Acquisition Program	-	-	106.72	7,816.17	-	7,922.89
TOTAL	27,506.14	6,726.90	2,946.82	7,816.17	10,686.31	55,682.33

Chapter 12

The O&M CAPEX Program will also include the Grid Protection Relay Replacement Project (Priority 1, 2, and 3) or GPRRP. The project involves the replacement of protection relays in Luzon, the Visayas and Mindanao Grids to ensure safe, secure, reliable system operations.

12.2 Metering Facilities

12.2.1 Obligations of Metering Service Provider for the Wholesale Electricity Spot Market

NGCP, the entity granted by the ERC with the Certificate of Authority as WESM Metering Service Provider (WMSP), is responsible for ensuring compliance of Gridconnected Facilities to the metering requirements prescribed by the OATS Rules, WESM Rules and Metering Manual, PGC, PEC, other applicable laws and supplemental guidelines issued by the ERC and the DOE. This responsibility is defined under Article III of ERC Resolution 28 Series of 2006.

a. Revenue Metering Capital Projects

To satisfy these obligations, NGCP is required to continuously undertake metering capital projects classified into two major categories, namely:

Regulatory Requirements Compliance Projects

The main driver for this project category is compliance to

The protection relay replacements also include other protection associated equipment, such as control system, auxiliary system, tele-protection system, construction of control buildings, which are necessary to operate the protection relays efficiently and properly.

According to the ERC Resolution, only an ERC-licensed WMSP shall be allowed to enter into a contract with a WESM Trading Participant for the provision of metering services which include in its scopes the installation, operation and maintenance of metering facilities.

The PGC 2016 Edition also states that a metering facility may only be declared as ready for revenue metering service when regulatory conditions are satisfied as certified by the WMSP.

metering requirements prescribed by the applicable rules governing WESM. This project is classified into four subcategories.

NEW METERING FACILITIES New connections to the Grid

RELOCATION OF METERING FACILITIES Metered with respect to the prescribed connection points

COMPLIANCE OF METERING FACILITIES Equipment compliant to WESM technical requirements

MEASUREMENT ASSURANCE PROGRAM

Calibration Traceability of measurements

Metering Systems Reliability Projects

The main drivers for this project category are security and reliability of metering facilities to maintain a state of compliance to regulatory requirements. This project group is classified into two sub-categories.

METERING REPLACEMENT PROGRAM Timely replacement of deteriorated assets

METERING SPARES

Timely replacement of failed assets

AMR SYSTEM UPGRADE

Timely delivery of accurate data for WESM Settlement

b. Revenue Metering Capital Assets

The following table provides the rationale for the NGCP metering Capital Projects and the necessary revenue metering Capital Assets required to implement the projects.

Project Sub-Categories	Capital Asset Requirements	Governing Rules
New Metering Facilities	Meters	OATS Rules
a. Generators	Combined Instrument Transformers	E2.1
b. Load Customers	Current Transformers	 E3.2
	Voltage Transformers	 E11.1
	Lightning Arresters	 E11.3
	Communication Devices	 F(AIII) 3
	Meter Enclosure	WESM Metering Manual
	Test Switches	 2.3.1
	Cablings	PGC 2016 Edition
	Grounding System	 GRM 9.2.2.3
	Conduit System	 GRM 9.2.4.3
	Mounting Structures	ERC Resolution 23 S2016
	Concrete Foundations	 Sec. 6.0
	Metering Perimeter	
Relocation of Metering Facilities	Meters	OATS Rules
a. Transmission Customers	Combined Instrument Transformers	 E2.1
b. NGCP Station Services	Current Transformers	 E3.2
	Voltage Transformers	E11.1
	Lightning Arresters	 E11.3
	Communication Devices	 E11.7
	Meter Enclosure	 F(AIII) 3
	Test Switches	WESM Metering Manual
	Cablings	 2.2
	Grounding System	 2.3.1
	Conduit System	PGC 2016 Edition
	Mounting Structures	 GRM 9.2.1
	Concrete Foundations	 GRM 9.2.2.3
	Metering Perimeter	ERC Resolution 23 S2016
		 Sec. 6.0
		DOE DC 2018-05-0015
		 (c) WESM Rules Clause 3.2.2.2
		DOE DC2016-05-0007 Sec. 2

Table 12.2 Metering Capital Asset Requirements

Project Sub-Categories	Capital Asset Requirements	Governing Rules
Compliance of Metering Facilities	Meters	OATS Rules
a. Non-compliant HVE	Combined Instrument Transformers	 E3.2
b. Conversion to Full Metering	Current Transformers	 E11.3
b. conversion to ratt metering		 F(AIII) 3
	Voltage Transformers	
	Lightning Arresters	WESM Metering Manual
	Concrete Foundations	 2.3.1
		2.4-2.11
		PGC 2016 Edition
		 GRM 9.2.2, GRM 9.2.3
		DOE DC2016-05-0007
		 Sec. 1
Measurement Assurance Program	CMCL Standards	OATS Rules
	Multi-meters	
a. Laboratory Standards		
b. Field Test Instruments	Clamp Meters	WESM Metering Manual
c. Other Tools and Equipment	CT/PT Test Sets	 2.5.4.4 (a)
	Meter Test Sets	PGC 2016 Edition
	Insulation Testers	 GRM 9.2.4.1
	Earth Testers	 GRM 9.2.4.2
	Thermal Scanners	 GRM 9.2.5
	Tools and Equipment	ERC Resolution 28 S2006
		 2.2.2.3
		 2.2.2.4
		DOE DC2016-05-0007
		 Sec. 1
Metering Replacement Program	Meters	OATS Rules
a. High Voltage Equipment	Combined Instrument Transformers	 E3.2
b. Meters and accessories	Current Transformers	 E11.3
		PGC 2016 Edition
	Voltage Transformers	
	Lightning Arresters	 GRM 9.2.4.1 (e) (f) (g)
	Meter Enclosures	 GRM 9.2.4.3
	Meter Test Switches	 GRM 9.2.8.4
		ERC Resolution 23 S2016
		Sec. 6.0
		ERC Resolution 28 S2006
		 3.4.5
Matarina Coaras	Meters	
Metering Spares		OATS Rules
a. High Voltage Equipment	Combined Instrument Transformers	 E3.2
b. Meters and accessories	Current Transformers	 E11.3
	Voltage Transformers	PGC 2016 Edition
	Lightning Arresters	 GRM 9.2.4.1 (e) (f) (g)
	Communication Devices	 GRM 9.2.4.3
		 GRM 9.2.8.4
		ERC Resolution 23 S2016
		 Sec. 6.0
		ERC Resolution 28 S2006
		3 .4.5
AMR System Operation	AMR Servers (Main and Back-up)	OATS Rules
		F6.2
a. Hardwares	AMR Workstations	LUIL
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3
a. Hardwares	AMR Workstations	 F(AIII) 3 WESM Metering Manual
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual 2.9.2
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual 2.9.2
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual 2.9.2 Sec. 5 PGC 2016 Edition
a. Hardwares b. Softwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual 2.9.2 Sec. 5 PGC 2016 Edition GRM 9.3.2
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual 2.9.2 Sec. 5 PGC 2016 Edition GRM 9.3.2 ERC Resolution 28 S2006
a. Hardwares	AMR Workstations AMR Softwares	 F(AIII) 3 WESM Metering Manual 2.9.2 Sec. 5 PGC 2016 Edition GRM 9.3.2

QX X

X

12.2.2 Requirement Analysis

The metering capital project requirements, which translate into revenue metering capital assets, were derived from the technical and commercial obligations of a Metering Service Provider as defined by the authorities

a. New Metering Facilities

This project covers the installation of Metering Facilities for new Generator and/or Load Customer connections to the Grid.

Based on the newly released 2022 Edition of OATS Rules, the Meter Only option, wherein the Transmission Customers provide some of the metering equipment except for the meters, is no longer available. The responsibility of providing all the required WESM metering equipment is now the sole responsibility of the Metering Service Provider. This requirement is consistent with the provision of ERC Resolution 23 Series of 2016 which excludes the metering equipment used for Metering Services from the connection assets of Transmission Customers and requires Transmission Customers to dispose or transfer assets with transmission function in favor of the Transmission Provider.

The list of new metering facilities is determined based on the following considerations:

- Requirements for new metering facilities for Transmission Customers which have already been communicated to NGCP through requests for facility studies et. al.
- Private Sector Initiated Power Projects as published at the DOE Website
- Growth forecast for new load customer connections

b. Relocation of Metering Facilities

This project covers the relocation of Metering Facilities to the prescribed connection point/s.

According to PGC and WESM Metering Manual, the Metering Point shall be located at the Connection Point or Market Trading Node. DOE DC2018-05-0015 further clarified that the metering equipment for the market trading node shall be installed no more than 500 meters from the connection point. ERC Resolution 23 Series of 2016, on the other hand, redefined the connection point based on the functionality of assets, regardless of its ownership.

These requirements and new definition of connection point serve as the basis for the following project classifications under Relocation of Metering Facilities: governing WESM Metering through the OATS Rules, WESM Metering Manual, PGC and guidelines issued by ERC or DOE.

Transmission Customer Metering – existing transmission customer metering point/s not located at the prescribed connection point will be transferred or totalized at the prescribed connection point

NGCP Station Service Metering – permanent metering facilities will be installed at the prescribed connection points using WESM compliant metering equipment

The list of metering facilities for relocation is determined based on the following considerations:

- Connection point/s as defined by ERC Resolution 23 Series of 2016
- Metering points located more than 500 meters from the connection points
- Existing NGCP Station Service Transformers and corresponding locations of temporary metering points

Compliance of Metering Facilities

This project will address non-compliances of installed metering equipment against the standards prescribed by PGC and WESM Metering Manual such as, but not limited to, the following:

- Metering Equipment or Facilities not meeting required specifications
- Metering Equipment not used exclusively for WESM revenue metering purpose

According to WESM Metering Manual, continued noncompliance of metering installations shall be subject to sanctions or penalties. To ensure full compliance to this requirement, NGCP will undertake the procurement of replacement assets regardless of the ownership of the existing equipment.

In addition to the above-mentioned non-compliances, the conversion of existing Meter Only metering to Full metering facilities which are not covered by other metering project groups shall be incorporated to this project category. Consistent with OATS Rules 2022 Edition requiring the WESM MSP to provide all Metering Equipment, NGCP will either acquire or replace all customer-supplied Instrument Transformers subject to the results of negotiations with the equipment owner.

The list of metering facilities for compliance is determined based on the following audit results:

- NGCP Internal audit results
- External audit results by PEMC, ERC and others

Measurement Assurance Program

This project covers the procurement of Tools and Equipment to support compliance to the Measurement Assurance System requirements:

- Laboratory Standards
- Field Test Instruments
- Other Tools and Equipment

The WMSP is required by ERC to operate and maintain a measurement assurance system consisting of procedures, meter calibration standards and testing equipment and a central meter calibration laboratory. The purpose is to ensure the traceability of measurements of metering equipment to National Institute of Standards or to any reputable international standard body.

The list of Laboratory Standards and Field Test Instruments is determined based on the following Considerations:

- Calibration traceability requirements for field test instruments and installed metering equipment
- Operational requirements per field metering offices (existing vs. required test instruments and tools)
- Triggers such as end of asset life, obsolescence, asset condition and failures

Metering Replacement Program

This project covers the procurement of replacements for metering equipment to handle the following scenarios:

End of Asset Life

Since the likelihood of failure of older equipment is higher due to natural deterioration process, NGCP has incorporated the replacement of ageing assets to its asset management system consistent with ERC policies. In consideration of the newly issued 2022 edition of OATS Rules requiring the WMSP to provide all metering equipment and ERC Resolution 23 Series of 2016 which excludes the metering equipment from the customer connection assets of Transmission Customers, NGCP shall undertake the replacement of fully aged assets including those provided by the transmission customer. Consequently, meter only metering facilities will be

12.2.1 Project Development

New Metering Facilities

The accuracy of the list of proposed projects under new metering facilities relies heavily on the correctness and timeliness of information received by NGCP about incoming connections to the grid.

converted to full metering upon replacement of their equipment with NGCP-owned assets.

The metering replacement program requirements are determined based on the following considerations:

- Age of metering assets.
- Present condition of assets.
- Procurement lead time.

Metering Spares

This project covers the procurement of spares for metering equipment to handle the following scenarios:

Equipment Failure

A metering equipment which failed the accuracy test or malfunctioned is required to be replaced immediately. NGCP shall undertake the procurement of metering spares including the requirements for transmission customer owned equipment to ensure immediate replacements of failed metering assets. Consequently, meter only metering facilities will be converted to full metering upon replacement of their equipment with NGCP owned assets. This is consistent with the requirements of OATS Rules 2022 Edition and ERC Resolution 23 Series of 2016.

The metering spares levels are determined based on the following considerations:

- Present asset conditions
- Historical failure rates
- Procurement lead time
- Geographic locations of spares storage facilities
- Installed equipment specifications

AMR System Upgrade/Operation

This project covers the replacement and/or upgrade of Automatic Meter Reading (AMR) which is composed of hardware, software, and communication infrastructures necessary for the delivery of settlement-ready meter data to WESM at the prescribed delivery schedules.

The timelines and activities are determined based on the following considerations:

- Age and conditions of AMR system hardware
- Maintenance contract with the AMR system provider
- Availability of alternative AMR system in the market
- Availability of new communication technologies in the market

For incoming generators, the list of committed and indicative Private Sector Initiated Power Projects sourced from the DOE website and the received requests for facility studies and operational assessments by NGCP provide useful references for the proposed projects.

Recently, NGCP has also started receiving load growth forecast from Trading Participant for incoming load

customer connections; however, the quantity of planned connections submitted for reference are still relatively few. Thus, it is still necessary to make an estimated forecast of annual requirements for new load customer metering facilities. Table 12.3 provides the estimated new load customer connections per year to the transmission grids based on the historical average numbers of Metering Facilities commissioned annually. These estimates served as reference for the anticipated metering points for load customers proposed in this TDP 2023-2040.

Relocation of Metering Facilities

Transmission Customers: Table 12.4 provides the status of compliance of existing metering points to the DOE DC2018-05-0015 and ERC Resolution 23 Series of 2016's definition of connection points. These figures served as reference for the relocation projects for the TDP 2023-2040. Unless there will be space and security constraints at the proper connection points, NGCP will undertake and target the completion of relocation projects by 2027.

Table 12.3: Annual Growth Forecast for new Load Customer Connections

Metering Points/ Year	Luzon	Visayas	Mindanao
115kV	1	0	0
69kV	7	7	5
Total	8		5

Table 12.4 Status of Compliance to ERC Resolution 23 Series of 2016

Region	Total Metering Points	Compliant	Non-compliant	Percentage (Compliant/ Total)	Required Relocation	Total MP after Relocation
Luzon	615	408	207	66.34%	117	525
Visayas	294	188	106	63.95%	61	249
Mindanao	252	161	91	63.89%	53	214
Total	1,161	757	404	65.20%	231	988

NGCP Station Service: Majority of station service consumptions of NGCP Substations are presently being metered using temporary WESM meters installed in series with the statistical meters of the substations. This project intends to relocate the metering to the proper connection points which is at the 13.8kV tertiary winding of the main transformer. Table 12.5 provides the list of Station Service Transformers requiring proper metering. These figures served as reference for the NGCP Station Service Permanent Metering proposed in this TDP 2023-2040. Unless there will be space constraints at the proper connection points, NGCP will undertake and target the completion of relocation projects by 2027.

Table 12.5 Metering Facilities for NGCP Station Service

Region	Existing Temporary Metering Points	Compliant	For Relocation
Luzon	106	28	78
Visayas	51	4	47
Mindanao	53	18	35
Total	210	50	160

Compliance of Metering Facilities

The Philippine Electricity Market Corp. (PEMC) conducts Review of Metering Installation Arrangements once every two years covering around 30% of Metering Points in Luzon and Visayas. The audit aims to determine the compliance of NGCP as MSP to the standards set by WESM.

Metering Facilities which were found non-compliant with the WESM standards demand corrections by MSP. Some of the audit findings for the year 2016 were already corrected and others already have compliance plans which includes replacement of non-compliant metering equipment, rearrangement of metering equipment in accordance with the WESM requirements and others. In anticipation of the Metering Arrangement Review, it has become a regular practice of NGCP to perform internal audits to be able to come up with compliance plans. Table 12.6 provides the statistics of Metering Points with Noncompliances based on the audit reports. Included also in the table are the statistics of meter only facilities which are programmed for conversion to Full metering as required by OATS Rules 2022. These figures served as reference for the compliance projects for the TDP 2023-2040. NGCP will undertake and target the completion of compliance projects for both Full and Meter Only Metering Facilities by 2027.

Table 12.6 Remaining Metering Facilities for Compliance

Region	Correction of Non- compliance	Conversion to Full metering	Total
Luzon	25	171	196
Visayas	14	89	103
Mindanao	10	70	80
Total	49	330	379

Measurement Assurance Program

Laboratory standards, field test instruments, tools and equipment bought during the 2^{nd} , 3^{rd} and 4th regulatory period will reach the end of their asset life by the 5^{th} , 6^{th} and 7^{th} regulatory period:

- Laboratory Standards asset life of 12 years
- Field Test Instruments asset life of 10 years
- Tools and equipment asset life of 10 years

Metering Assets are expected to go through natural wearand-tear. Our experience shows that the established asset life accurately defines the economic and technical performance of this asset category. Majority of the test instruments procured during the 2nd and 3rd regulatory periods have shown signs of deterioration around the time they have reached their assigned regulatory life including, but not limited to, the following:

- Accuracy and Performance Issue
- Power Supply and Component Failure
- Firm Ware Error

Existing instruments are programmed for replacement as soon as they reach their asset life and have also exhibited signs of decline in performance. The proactive asset management system that NGCP implements is consistent with the policies of the ERC, which continuously monitors the age and conditions of the assets to come up with a reasonable replacement program. While NGCP considers both as important triggers, the actual asset conditions are given more importance than the age of the assets. The run-to-failure approach is implemented for fully aged serviceable instruments. These assets are utilized for redundancy purposes.

Other instruments included in this proposal are intended to address operational, maintenance, and automation requirements which are also based on regulatory obligations of the MSP such as testing, calibration, and maintenance of metering installations as defined by PGC 2016 and further clarified by DOE DC2016-05-0007.

Metering Replacement Program

Metering Assets are expected to go through normal wearand-tear. Our experience shows that the established asset life for the following metering equipment accurately defines their economic and technical performance:

- Voltage Transformers asset life of 30 years
- Current Transformers asset life of 30 years
- Combined Instrument Transformers asset life of 30 years
- Lightning Arresters asset life of 30 years

However, electronic meters and modems, with assigned asset life of 10 years, have the tendency to fail earlier than their expected lifespan. Obsolescence is also an added consideration for these types of assets.

These items are to be replaced towards the end of their assigned Asset Life and when they exhibit impending failure. Information on asset age and condition served as primary reference for the replacement program for installed metering equipment included in this TDP 2023-2040.

Metering Spares

Maintaining an optimal level of metering spares is critical for ensuring the continuous and reliable operation of the metering systems. The standard quantity of 3% of installed metering equipment, previously used to determine the spares requirements, failed to completely provide the operational requirements of NGCP due to the following scenarios:

- Unexpected failure of some metering equipment (meters and modems) prior to assigned asset life
- Transmission customers' failure to provide spares for customer-owned metering facility in case of equipment defect.
- Unplanned metering requirements e.g., new grid connections, new regulatory guidelines

NGCP was forced to utilize not only its limited spares, but also other metering equipment originally intended for different projects to partially address the above-mentioned scenarios.

To address this, NGCP has implemented some improvements in the spares program to better support the operational requirements of NGCP.

AMR System Upgrade/Operation

The proposal for this TDP 2023-2040 project sub-category will include:

- AMR System Hardware: will be replaced as they reach their assigned Asset Life or when they become obsolete or fail in service.
- AMR System Software (currently the MV-90 System): will be replaced or upgraded as they reach their assigned Asset Life (5-years) or when they become obsolete or fail in service.
- AMR System communication infrastructure: will be replaced as they reach their assigned Asset Life (5-years) or when they become obsolete or fail in service.

12.2.2 Summary of 2023- 2040 CAPEX Budget Requirements

The estimated CAPEX Budget for the TDP 2023-2040 is shown in Table 12.7.

Project Sub-Category	Estimated Cost in Millions (PhP) 2023-2040
New Metering	2,623.549
Relocation	670.767
Compliance	1,298.024
MAP	595.745
Replacement	870.400
Spares Program	214.076
AMR System	117.774
Total	6,390.335

Table 12.7 2023-2040 CAPEX Budget

SYSTEM OPERATIONS

13.1 Developmental Objectives

The development plan for the SCADA. telecommunication and protection components of the Power Grid is characterized by the need to cope with the market-driven demand for consolidation of enterprise and operations applications in the Energy Management Systems (EMS), subsequent necessity for bandwidth and interoperability in the communications network and indispensability of redundancy, i.e., N-1 in the protection systems. The importance of integrating embedded variable renewable sources of energy into the Grid has also made it a point to provision readiness in both the SCADA-EMS and telecommunication systems for addressing connectivity and data organization and for the protection system to be able to handle the peculiar power quality management issues.

The following are the objectives of the developmental program for the 2023–2040 planning horizon and the respective major CAPEX issues of interest.

- Migration to Efficient Technologies
 - Shift to IP-based transport/network
 - Completion of optical telecom backbone
 - Adoption of Smart Grid model; implementation of IEC 61850 standard
 - Use of hybrid power supplies
 - Supervision/monitoring functions employing public infrastructure
- Sustenance of Systems to Maximize Economic Lives
 - Stagger the retirement/replacement of systems running through obsolescence
 - Technological prudence: specified functions and upgradability should be realized within expected service life

13.2 Situational Analysis

13.2.1 Telecommunications

As the pace of development vis-à-vis geographic peculiarities of the electricity grids in Luzon, Visayas and Mindanao varies significantly, the characteristics of the respective telecommunication systems and facilities differ appreciably among each other. On a nationwide scale, backbone infrastructure is dependent on the continuity of

- Manage maintenance and replenishment of battery banks
- Employ remote fiber monitoring systems for quick detection of damaging factors
- Prioritization of Infra Expansion/Upgrade to Areas of Most Benefits at Least Cost
 - Enhanced EMS applications, with emphasis on VRE management
 - OPGW retrofitting to enable access to bandwidth
 - Upgrade of power supply systems and other support infra
 - Compliance with data center standards
- Address Deficiencies that Prevent Optimized Network Performance
 - Completion of network synchronization system
 - Integration of telecom network management systems
 - Securing RCC interfacing to HVDC control system
 - Equipping RTUs with IP interfaces
- Compliance with Grid Code and Regulatory Directions
 - Monitoring and control of embedded generators
 - VRE forecasting
 - Consistency with Protection, SCADA and Telecommunication Philosophies
 - Meeting power quality and system availability requirements
 - Grid resiliency measures
 - Real-time monitoring and control at connection points
 - Cyber Security

transmission-line-embedded fibers-for this matter, relatively recent transmission line segments without OPGW must be retrofitted to interconnect the alreadyfiber-embedded lines in the new installations.

From the register of our existing telecom facilities, we define:

• The need to replace part of the installed base already without spare parts support as well as the

program for replenishments of equipment upon obsolescence

- Required upgrades or replacements to address capacity/bandwidth issues resulting from a particular element's deficiency
- Additional facilities that will provide element and path redundancy in compliance with our N-1 philosophy
- Additional network management components to consolidate remote control capability over telecom network elements.

On the network level, as the open market integrates, the respective characteristics of the telecommunication networks in Luzon, Visayas and Mindanao become more similar as common performance parameters are adopted

and the same operating philosophies are shared. Further, the requirement for more backbone bandwidth (and the subsequent need to reinforce synchronization of the high-speed transport network) is nonetheless increasingly and universally felt, catering to the demands of the now-mainly-IP-based applications. The 2023–2040 CAPEX projects identified in this report reflect this trend as an integrated NGCP telecommunication network develops over the course of the planning horizon.

Following is an illustration of the geographic extent of the optical infrastructure on which basis the collective performance of NGCP's operations and business applications are founded on:

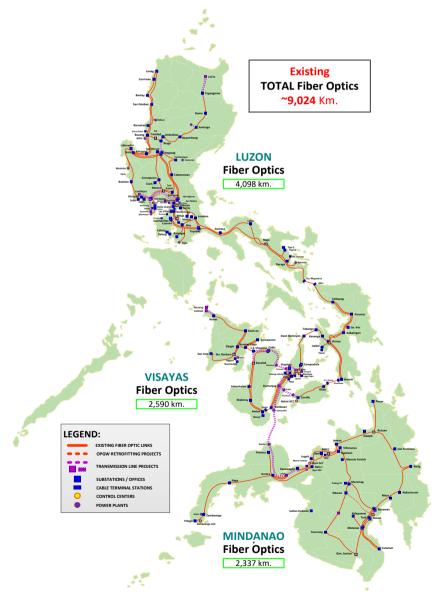


Figure 13.1: Fiber Optic network

13.2.2 SCADA-EMS

NGCP's Regional Control Centers (RCCs) are responsible for monitoring and control of the transmission systems in each of the three power grids: Luzon, Visayas and Mindanao. Backup RCCs were also established to take over the functionalities of RCCs during contingency events. Several Area Control Centers (ACCs) are situated in each Region to supervise other parts of the transmission network not directly managed by the RCCs and to coordinate with the customers in their respective areas of responsibility.

The entry into the Electricity Market of Visayas and Mindanao has resulted in significantly more complex operations in the regions. The need for comprehensive SCADA/EMS coverage has also been made more difficult by the rapid changes in Grid configuration brought about by the integration of new players.

The major issues for improvement of the existing SCADA/EMS arrangement are characterized below:

 The responsiveness of the existing SCADA system to the requirements of VRE integration as well as to the 5-minute real-time dispatch mechanism depends on enhanced computing resources as well as improved accuracy of the telemetry system.

- Inadequacies in auxiliary support facilities for some of the control centers should be addressed to avoid unreliable SCADA operations and accelerated equipment ageing and failure.
- Exposure of the SCADA-EMS system to cyber security risks has become more prominent as threats grow alongside technology-driven commerce.

There is limited infrastructure reach to readily address supervision of embedded generators.

The development of the Grid in response to Market demand in terms of capacity growth, geographic expansion and challenges in dispatching generators of renewable energy has manifested itself in the SCADA-EMS system through the consolidation and standardization of data collection and management processes and the employment of specialized modeling and analytical applications as part of EMS. The 2023–2040 CAPEX projects are in line with this development trend.

Figure 13.2 is an illustration of the pertinent SO-MO process flow involving NGCP's SCADA-EMS and its interface to the Market.

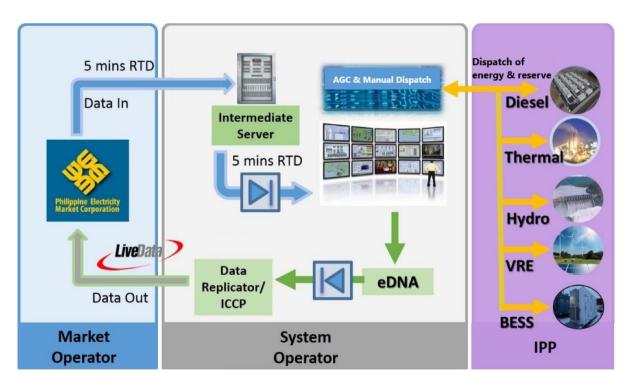


Figure 13.2: SO-MO Process Flow

13.2.3 Protection Systems

A resilient Power Grid made possible through an effective protection system is a requisite for the realization of the Smart Grid environment. However, the existing protection facilities are significantly lagging in terms of compliance with the Network Protection Philosophy, especially in Mindanao where complementary telecommunication facilities to support path redundancy requirements are still under development.

The challenges presently faced by the existing protection system are described by the following needs:

- Replacement of obsolete protection equipmentwhich has no more manufacturer support and lacks modern communication features-has to be accelerated to minimize equipment failures as well as to consolidate (remote) management and maintenance.
- Redundancy requirements to meet the N-1 objective necessitate the addition of relay equipment where no Main 2's are present and upgrade of existing relays where the required philosophies governing Main 1 and Main 2 modes have not yet been realized.

 Strategic deployment of NDME and PQA to ensure quick and accurate diagnostics of network disturbances and power quality issues in compliance with PGC requirements.

The present state of stability still requires continued employment of SIPS in strategic areas of the Grid.

While programmed substation upgrades address the above needs through the accompanying upgrading of the secondary equipment attributed to the transmission lines (radiating from the substation), such substation upgrades would not significantly cover the deficiencies in due time given the respective implementation schedules. Thus, the 2023-2040 CAPEX for protection builds up on relay, NDME, and PQA equipment-the lack of which compromises NGCP's performance objectives.

13.3 Summary of CAPEX Costs

CAPEX Costs 2021–2040 (In Million Pesos)

Function	Replenishments	Rehab/Upgrades	Expansions	Total
Telecoms	7,678	690	4,141	12,509
SCADA	5,075	871	3,008	8,954
Protection (NDME/PQA)	1,226	28	173	1,427
Connection Point	0	0	3,877	3,877
Monitoring/Control				
TOTAL (Nom, MPhp)	13,979	1,589	11,198	26,767

Table 13.1 CAPEX Proportion by Function

Table 13.2 CAPEX Proportion by Region

Region	Replenishments	Rehab/Upgrades	Expansions	Total
Luzon	5,516	525	4116	10,157
Visayas	4,088	662	3,006	7,756
Mindanao	4,376	402	4,076	8,854
TOTAL (Nom, MPhp)	13,979	1,589	11,198	26,767

Table 13.3: Telecom Projects According to Nature of Facilities

Telecom Facilities	Luzon	Visayas	Mindanao	Total
Fiber Optics and OPGW	1,930	1,144	2,301	5,375
Microwave Radio	296	201	274	770
Network Management and Synchronization	559	677	503	1,738
Teleprotection Equipment	138	107	118	364
WAN and Access Equipment	673	256	603	1,532
Power Supply and Auxiliary	787	439	836	2,062
Cyber Security	242	22	16	280
Mobile Radio Network	65	27	68	160
Test Equipment	69	65	94	228
TOTAL (Nom, MPhp)	4,759	2,938	4,812	12,509

Table 13.4: SCADA/EMS Projects Categorized by Component Function						
SCADA/EMS Components	Luzon	Visayas	Mindanao	Total		
SCADA	2,694	2,402	1,927	7,023		
EMS Applications	45	7	69	121		
Cyber Security	284	84	118	486		
WAMS	409	439	528	1,376		
TOTAL (Nom, MPhp)	3,432	2,932	2,642	9,006		

13.4 Strategies

• Sustenance of Assets Against Technology Shifts. System Operations' primary asset management objective-and the main CAPEX driver-is to optimize the serviceability of its existing facilities, i.e., maximizing service lives up to the extent that the costs of ownership strategic benefits justify continued vis-à-vis maintenance. Therefore, given SO's dependence on software and electronics, rapid technological advances in either field increases the need for frequent

reassessment of the relevance of such assets to SO's functional objectives. Technologies and applications approaching obsolescence should be retired—albeit on an optimized schedule-and replaced with more efficient ones for the sake of improved performance and economics. Thus, the need to reduce and eventually end the acquisition of spares and maintenance support for the assets due for retirement and investing on their replacements, as follows:

Table 13.5 CAPEX Proportion by Function

Powe	Decreasing Functionality er Line Carriers (PLCs) cannot be used to provide	Current Paradigm Fiber is the preferred media for line protection offering both the best
differ reduin requinappli have Micro and b	<i>rential</i> line protection and cannot be used as a ndant backbone access channel given the bandwidth irements of current business and operations ications. PLC is also quite expensive for stations which ready access to fiber-embedded transmission lines. owave radio shall be limited to spur link applications backup routes where no transmission lines can be used	bandwidth and reliability. All new transmission lines are already embedded with fiber and existing lines continue to be retrofitted with OPGW. Optical terminals are cheaper to acquire and maintain and protection relays can be outfitted with optical transceivers enabling "direct fiber" line protection setups. Retrofitted fiber is much cheaper in addressing backbone needs given the exponential bandwidth growth.
-	tablish optical transport.	Doutors and Ethernot quitches shall begin to displace TDM multipleuers
	There would be less use of TDM channel multiplexers as service access is shifted to IP.	Routers and Ethernet switches shall begin to displace TDM multiplexers along the service access points as applications migrate towards IP communication.
•	SDH transport facilities are already being migrated to packet-switched networks.	IP-based transport facilities shall gradually replace SDH networks that are now reaching obsolescence.
•	PABX equipment shall be totally phased out as circuit-switched arrangements become obsolete.	Telephony and other multimedia services shall run through the IP network not unlike other applications using networked servers.
•	RTUs for Power Grid SCADA shall become less relevant as automation and data communication is integrated into substation and power plant design.	Remote data collection requirements shall be reduced to compliance with supervisory and communication protocol and hardware limited to intermediary access terminal for security purpose.
•	User owned telecommunication facilities to reach remote IPPs will be less favored especially when no tele-protection complement is required.	Less CAPEX-involved public infrastructure to establish access among IPPs (especially embedded ones) shall be taken advantage of but cyber security arrangements shall be given due attention.
•	Use of Distance Relays shall be limited only to areas where differential protection cannot be applied on account of bandwidth limitation.	Differential Relays (with direct-fiber interfaces) shall displace more and more Distance Relays as fast communication interfaces through fiber and radio become pervasive.

• Timing of Projects. Given the interdependence of technology and infrastructure-as well as the role of organizational evolution adapting to market trend-on defining developmental direction, outlined below are the implementation sequence of major projects for the purpose of validation and prioritization. It is also the purpose of this development plan to make rescheduling of projects convenient when faced with limited budget or implementation resources. Optimization demands that just enough infrastructure is ready to accommodate the applications as they come and that right applications are chosen to take advantage of the minimum.

infrastructure components in place at the time of need.

 CAPEX Priorities. As shown in the above schedule. 59% of projected CAPEX is allocated for sustenance of existing facilities and the rest for programs to address current deficiencies and new requirements. This does not mean that the same apportionment would be observed in case of budget constraints. While sustenance would ideally be the priority, the new facilities are also meant to address deficiencies in existing service areas. Should CAPEX limits be apparent because of transmission regulation, prevailing demand for pertinent applications shall be prioritized.

ANALYSIS OF SYSTEM OPERATIONS 2021-2040 CAPEX						
OMPONENT	2021 - 2025	2026 - 2030	2031 - 2040			
	564 kms of OPGW	in Luzon				
BACKBONE	379 kms of OPGW i	in Visayas				
DACKDONE	1,686 kms of OPGV	V in Mindanao				
	43 nodes of OTN	Backbone				
ACCESS	Telecom Access F	acilities				
	Integrated NMS					
	FMS/BMS/RFMS	for Telecom Stati	ons			
ADMINISTRATION	RTUs for IPPs/Monitoring of Embeddeds					
	150 DOAL / 45 NDME	WAMS: PMU's				
		ng Terminals				
CYBER SECURITY						
ENHANCED APPS		-	ntrol			
TELECOMS			ecom Facilities			
	_					
SCADA SYSTEM						
PQA/ NDME	PQA and NDMEs					
& Control of DUs	296 nodes					
	240 nodes					
	DMPONENT BACKBONE ACCESS ACCESS ADMINISTRATION CYBER SECURITY ENHANCED APPS ENHANCED APPS SCADA SYSTEM PQA/ NDME	OMPONENT2021 - 2025BACKBONE564 kms of OPGW379 kms of OPGW1,686 kms of OPGW1,686 kms of OPGW43 nodes of OTMACCESSTelecom Access FADMINISTRATIONIntegrated NMSFMS/BMS/RFMSADMINISTRATIONFMS/BMS/RFMSAdded MonitorinCYBER SECURITYCyber SecurityENHANCED APPSAVC AcSCADA SYSTEMControl Center FSCADA SYSTEMControl Center FPQA/ NDMEPQA and NDMEsACONTOL of DUS296 nodesAUC nodes296 nodesAUC nodes296 nodes	OMPONENT2021 - 20252026 - 2030BACKBONE379 kms of OPGW in Luzon379 kms of OPGW in Visayas1,686 kms of OPGW in Mindanao43 nodes of OTN BackboneACCESSTelecom Access FacilitiesACCESSTelecom Access FacilitiesADMINISTRATIONIntegrated NMSFMS/BMS/RFMS for Telecom StatiRTUs for IPPs/ Monitoring of Embu WAMS: PMU's150 PQAs / 46 NDMEsAdded Monitoring TerminalsCYBER SECURITYCyber SecurityVRE Forecasting/DispatchingENHANCED APPSAVCAUCAutomatic Voltage Co Specialized Online Analysis ToolsTELECOMS"30,000 Fiber Kilometers / Tele 134 nodes of Regional OTNSCADA SYSTEMControl Center Facilities (RCCs/BRG IVM RCC Replacement SCADA Remote TerminalsPQA/ NDMEPQA and NDMEsACONTOI Of DUs296 nodes (switchgear Assembly, Secondary and Telecom)			

Figure 13.3: Analysis of SO 2021-2040 CAPEX

As an example, EMS enhancements for the purpose of improving SO response to Grid dynamics and maximizing access to energy sources according to market conduct are lined up for implementation through the 4th and 5th regulatory periods. Projects for either infrastructure reinforcement or sustenance/upgrade programs would hence depend on the relative significance of the affected network elements or sections in support of said EMS applications. Prominent in this respect are the VRE forecasting and modeling applications.

Imperative also during the early years is putting in place the pertinent synchronization mechanisms and enforcing communication protocols which govern the building blocks of our automation and control systems.

Finally, given the increasing dependence of SO on IT and communications svstems-amid the arowina pervasiveness of the internet in the business environment-the need to protect System Operations against cyber threats has manifested itself as an indispensable determinant in development planning and engineering design.

Table 13.6 CAPEX	Summary
------------------	---------

PROJECT LIST			5th REG	i.		6th REG	7th REG	8th REG	TOTAL
		2022	2023	2024	2025	2026-2030	2031-2035	2036-2040	2021-2040
iber Optic and Microwave Radio Equipment Replacement	23	10	59	385	382	410	1,401	166	2,834
eleprotection Equipment Replacement	21	18	30	19	15	71	122	69	364
Telecom Access and Remote Management Component Replacement	62	29	30	95	39	900	692	915	2,761
ower Supply and Auxiliary Equipment Replenishment	89	81	58	239	105	559	538	549	2,219
fra and IT Support Facilities Replacement	68	100	77	87	123	761	367	361	1,944
CADA/EMS Facilities Replacement	44	86	375	873	236	1,352	377	849	4,192
DME and PQA Replacement	44	73	39	66	50	224	536	224	1,254
CADA Expansion—Added RTUs and Monitoring Points	106	24	13	70	50	131	135	105	633
Telecom Access for Added Locations, Subscribers and Application Points	40	82	12	41	33	76	44	41	370
iber Optic and Microwave Radio Expansion	519	351	128	133	239	888	578	402	3,238
ubmarine Fiber Optic Link	0	0	0	0	0	0	0	0	0
yber Security	96	49	48	168	107	204	70	24	766
etwork Synchronization System	0	0	0	0	0	0	0	0	0
Network and Facilities Management System and IT Support Facilities	56	193	76	21	20	154	70	55	645
MS Enhancements	2	0	0	0	0	17	85	17	121
/ide Area Measurement System (WAMS)	0	0	0	0	0	814	562	0	1,376
DME and PQA Expansion Program	52	22	57	7	0	8	25	4	173
lonitoring and Control of DUs	61	4	213	319	478	2,052	0	0	3,127
enerator Monitoring	0	0	0	365	153	232	0	0	750
TOTAL	1,282	1,121	1,213	2,888	2,029	8,852	5,602	3,779	26,767
			8,534				.,		

13.5 Telecommunications13.5.1 Fiber Optic Network Expansion

.

The following are diagrams for the 2023–2040 programmed additions for the Fiber Optic network. The expansions include optical fiber links resulting from new

transmission line projects as well as OPGW retrofitting on existing transmission lines programmed in this section:

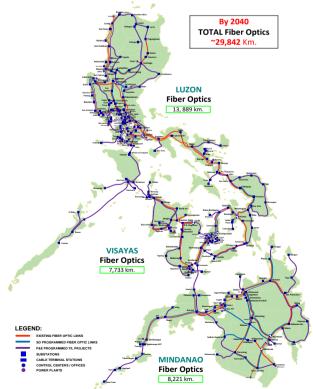


Figure 13.4: FO Network by 2040

13.5.1 IP Transport Network Implementation

The need to adopt a high capacity and purely-IP-based telecommunication infrastructure calls for a phased implementation of the telecommunication transport system migration to optimize the life of existing TDM/SDH equipment. The cost for migration has been outweighed by the cost of sustaining and provisioning legacy equipment whose respective O&M efficiencies have been surpassed by modern technology. Thus, the current SDH transport network would be sustained only up to the elements' economic lives where feasible and legacy TDM applications would be run on emulated mode (over IP) until such time that the applications themselves have migrated into their respective IP modes. New application requirements which demand for high bandwidth and secure telecommunication network render SDH transport system obsolete for obvious capacity limitation. The fairly mature Optical Transport Network (OTN) technology is

preferred to address the new mission-critical network requirements. It offers the advantages of being flexible, open technology, scalable, and cost-effective long-term infrastructure solution. It is aimed to increase network performance by lowering latency, increasing network manageability, and paving the way for the network to embrace purely IP-based networks and Software-Defined Networking as planned.

The acquisition of new IP-based transport appliances, therefore, should be complemented by the choice of the adequate transport protocols, reinforcement of the network management centers and putting in place of appropriate out-of-band network probes to ensure that performance thresholds are met.

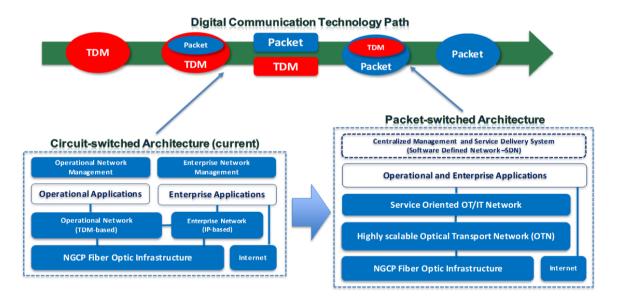


Figure 13.6: NGCP ICT Infrastructure Migration Path

13.5.2 Network Synchronization

The following NGCP network elements require a common reference clock - i.e., they need to be synchronized—for reasons peculiar to their respective functions and nature of operations:

- Telecommunications High-speed digital transmission technology requires synchronous telecommunication nodes
- SCADA/EMS Data monitoring/recording especially those from synchro phasor measurements, for purpose of power flow analysis and eventual automated control, must be synchronized
- Grid Protection Protection relays and event/waveform recorders require accurate time stamps for network performance analysis and post-event diagnostics

• **Metering** - Accurate billing information requires standard time reference

On a national scale, a synchronized timing system is also necessary to coordinate events and activities among the various collaborating government agencies and public utilities. Republic Act No. 10535, also known as The Philippine Standard Time Act of 2013, orders the synchronization of all clocks in the country under the Philippine Standard Time (PST).

Such need for synchronization is especially relevant as NGCP prepares for Smart Grid. Precise timing is necessary if coordinated supervisory control and quick

reaction to fast changes in real-time data would be realized to meet Smart Grid standards.

A unified synchronization system with stratum 1 traceability to a primary reference clock source has been established for NGCP to provide synchronization requirements to all the installed based network elements. This shall cover all telecommunications, SCADA, protection, metering, enterprise data network and other substation devices. The sync system shall continue to provide legacy timing protocols such as IRIG-B, 1PPS and 1PPM to old but functional network elements requiring such.

The installation of synchronization clocks at 138kV, 230kV and 500kV substations has been completed (refer to Appendix 6) and all network elements are currently being integrated for unified clock reference.

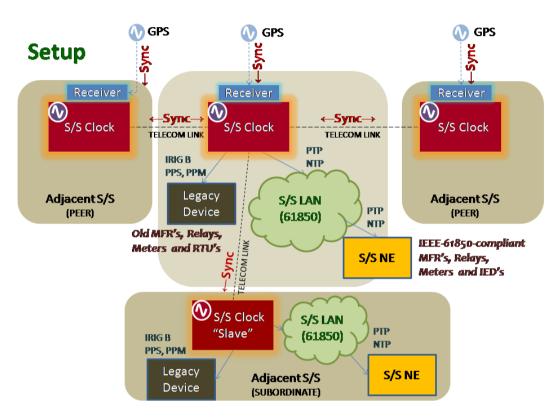
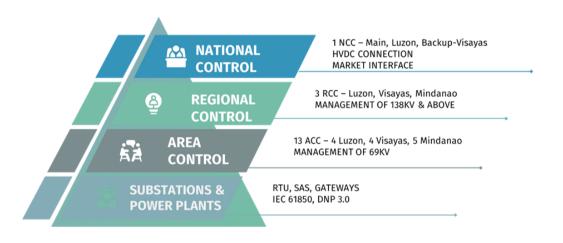


Figure 13.7: Synchronization Arrangement

13.6 SCADA Programs

13.6.1 National System Operations

The Visayas and Mindanao Grids will soon be interconnected via HVDC transmission system. As such as a single interconnected network. In consonance with this concept, a centralized monitoring and control is envisioned to be established to support the integrated operation of the transmission system and dispatch of all generation in the, there should be a holistic view of the Philippine Grid Philippines. The National System Operations (NSO) would be responsible for the whole grid operations once the Luzon, Visayas and Mindanao interconnection is complete.


The replacement of the near obsolete SCADA/EMS System should be timely in anticipation of the integration of the WESM operation among Luzon, Visayas and Mindanao to ensure continuous exchange of information between a unified SO and the Market Operator. The replacement/upgrade of SCADA/EMS for the three RCCs will realize the implementation of a National SO – the control center of which would be co-located with Luzon's. These replacement programs are harmonized with the implementation timeline of the MVIP towards the planned unification of the Philippine Grid against a nationwide resource-optimization objective.

The NSO would be responsible to carry out the following Grid-management lookouts:

- Supervise, monitor and control all interconnection of the three Regions (Luzon, Visayas and Mindanao).
- Monitor and control HVDC interconnection system during normal and emergency conditions.

- Manage the respective transmission backbones of the three regions (i.e. 500kV of Luzon, Visayas interconnection and 230kV of Mindanao.
- Conduct of simulation studies for the whole grid necessary for decision making.
- Supervise the implementation of Planned Activity Notice (PAN) of HVDC interconnection and the transmission backbone.
- Supervise the operations of the three Regional Control Centers.
- Coordinate with the Market Operator for the implementation of the RTD schedules of the three Regions.

Forecast week ahead and day ahead of the three Regions

NGCP CONTROL CENTER HIERARCHY

Figure 13.8: National System Operations Conceptual Framework

The backup RCC's would continue to operate using the existing platform in parallel operation with the upgraded

13.6.2 EMS Advanced Applications

Computer-aided EMS technology has been around since the 1980s and works in conjunction with SCADA systems to optimize generation and transmission resources. EMS advanced applications (software) are automation tools employed by electric power utilities designed for specialized tasks at hand within the realm of such resource optimization. NGCP EMS enhancement project involves the acquisition of preferred EMS advanced applications intended to:

Meet Current Market Demands

- The rapidly growing number of network elements—especially by the integration of embedded generators into the Market—requires more management attention and faster reaction; the 5-minute dispatch interval is expected to be implemented soon.
- Integration of more VRE into the supply pool requires quicker anticipation and more automated control.
- Efficient dispatch means less cost of electricity.
- Adapt to and Take Advantage of New Technology

SCADA-EMS systems to serve as redundant control center facilities for the purpose of business continuity.

- Lower cost of electronics means faster processing—an opportunity to pack more intelligence and automation into EMS.
- Greater bandwidth and less latency in IP communications afford access to more network elements, thereby facilitating greater control.
- Improve Performance should tap all available tools within the bounds of economics which will allow us to ensure that service availability and power quality are within performance thresholds.
- EMS is the brain behind an automated Grid management system—there is always room for more intelligence.

NGCP's EMS enhancement program was started during the 3rd Regulatory Period driven by the above considerations—following is the development road map:

The project is aligned with the overall network development plan aimed to support Market growth and optimization of energy sources, especially the VREs.

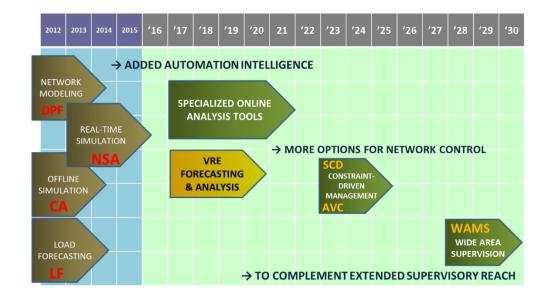


Figure 13.9: EMS Development Road Map

13.6.3 Cyber Security

As SCADA and SS automation systems increasingly play a vital role in NGCP as it works towards efficient operations, the need to protect these network elements from unauthorized access and threats becomes an increasingly significant task. The risks of security breaches are great if not attended to properly. Securing these systems, however, is not so simple: these systems are exposed at all times to access by a multitude of personnel and the need for data exchange with other systems requires interconnection to external networks. A comprehensive cyber-security system should be employed to address all possible threats to the system and cyber-security principles shall be considered in all aspects from planning and design to operations and maintenance.

The continuous cyber security implementation and improvement aims to enhance protection of NGCP's facilities from internal and external cyber threats and to prevent unauthorized access of SCADA facilities to ensure utmost degree of security for a more reliable power grid. This is also in compliance with the Department of Information and Communications Technology (DICT) National Cyber Security Plan 2022 wherein Critical Infostructure (CII), including the energy sector, should assure continuous operation and implement cyber resiliency measures to enhance the ability to respond to threats before, during, and after attacks.

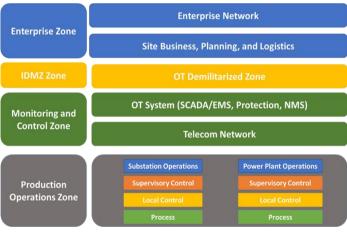


Figure 13.10: SO ICS Network Model based on layered security level

Figure 13.11: Cyber-Security Protection Layers

13.6.4 Real-time Monitoring and Control for Distribution Utilities

The project to install Real-Time Monitoring and Control Equipment for DUs is in compliance with DOE's request for its inclusion in NGCP's 4th Regulatory Period CAPEX program. This is in compliance with the implementation of DOE's Circular No. DC2012-030994 and DC No.2010-08-0010, entitled, "Addressing Power Supply Situation including rationalization of Available Capacities in Mindanao Grid" and "Prescribing the Implementing Rules and Procedures for Department Circular No. DC2010-05-006, entitled, Terminating the Default Wholesale Supplier Arrangement for Philippine Wholesale Electricity Spot Market (WESM) and Declaring a Disconnection Policy", respectively.

At present, control of NGCP's load customers is up to the substation level only which—while adequate for managing load limits to sustain system stability and power quality—would not allow SO's selective control over the customers connected to one feeder.

Following is an illustration of the proposed installation at each DU's connection point.

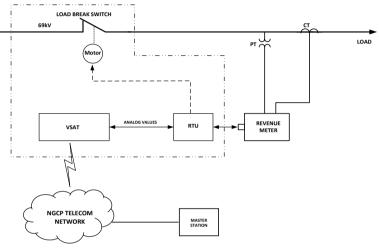


Figure 13.12: Connection Diagram for DUs

The connection diagram shows the wiring linkages of the new system facility including the telecommunication component. These will be remotely monitored and controlled by the master station located in NGCP's control center.

The figure below is an illustration of the physical setup at the customer side.

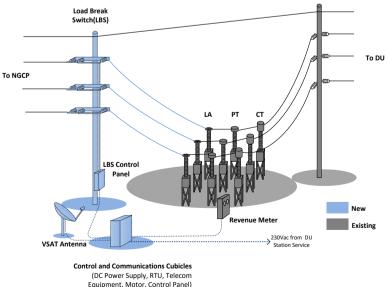


Figure 13.13: Physical Setup for DU Monitoring and Control

13.7 Network Protection and Power Quality

13.7.1 Network Disturbance Monitoring Equipment and Power Quality Analyzer Program

The undesired tripping of transmission lines and HVE in the grid are sometimes caused by non-operation or malfunction of the fault clearance system. The delay in the resolution of the cause of network failure and subsequent correction of network deficiencies is on account of the non-availability of fault data due to the lack of functional NDME's. Obsolescence and degradation because of age have also lessened the effectiveness of existing NDME's. Sustenance of NDME effectiveness should therefore be addressed through a replenishment program meant to meet outstanding deficiencies in this respect.

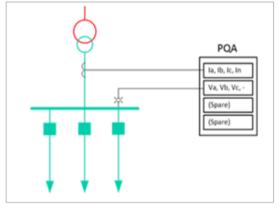
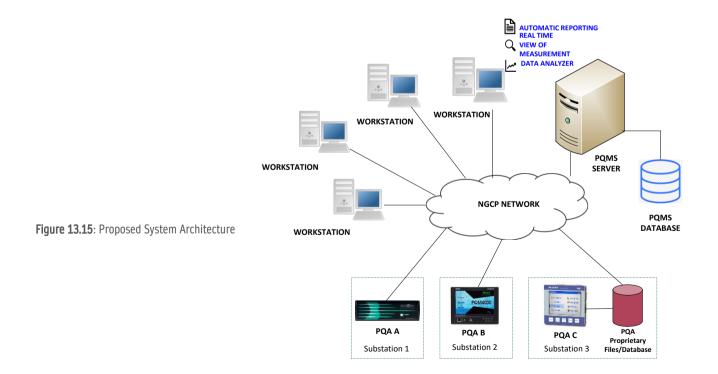



Figure 13.14: PQA installation at the secondary side of transformer

Power quality issues are prevalent in connection points along long multi-tap feeders, those subjected to significant supply-demand incongruence between peak and off-peak periods, lines with dynamic power flows, areas with connected inverters such as those used by VRE's and battery energy storage systems as well as nodes which are connected to large non-linear time time-varying loads (e.g., steel mills). NGCP's previous plan was to install PQAs at all NGCP customer connection points. However, an alternate less-costly compliance plan was formulated where PQAs will be installed at the secondary side of transformer which would cover the monitoring of all the connected feeders-reducing the total PQAs for installation. The proposed monitoring scheme is shown in Figure 13.14. The use of portable PQAs for deeper investigation into the customer side would complement this arrangement.

Hand-in-hand with the installation of PQAs is the establishment of a centralized Power Quality Management System (PQMS). With the growing number of installed PQAs, manual processing of PQ data will require extensive effort and become time-consuming. To address this, the proposed PQMS shall be able to manage bulk, raw data coming from different brands of PQAs and will automate report generation in accordance with PGC PQ parameters.

13.7.2 Protection Relay Replacement Program

To meet PGC security and reliability objectives, the fault clearance system needs to be enhanced through the replacement/upgrading of obsolete and defective protective devices and equipment as well as the installation of new protection systems. Aligned with the Smart Grid model, protective relays with enhanced communication systems and more interfacing options shall be incorporated to cover protection of all network elements which include transmission line, transformer, bus, and breaker-fail components.

A relay replacement program prioritized according to results of risk assessment is as follows.

Category of Replacement	Line Protection	Transformer Protection	Bus Protection	Breaker Fail Protection	Feeder Protection	Reactor Protection	Total
No Main 1	0	0	4	17	0	0	21
No Main 2	0	28	31	n/a	0	0	59
Non-Compliant	169	33	32	39	0	0	273
Obsolete	361	78	52	384	2	10	887
Defective	7	0	0	0	0	0	7
Total	537	139	119	440		10	1,247

Table 13.7 Overall Priority Table for Replay Replacement Program

APPENDICES

Appendix 1 – Ancillary Service Agreement Procurement Plan

a. Background: State of Ancillary Services (AS) in the Grid

As System Operator, NGCP determines the levels of AS required for each grid based on the results of assessment and simulation studies. These reserve levels which are variable according to network dynamics are meant to meet PGC-prescribed grid reliability and security requirements.

To qualify as provider of AS the prospective provider should undergo the certification process defined by the PGC. Subsequently, a certified AS provider would be subject to verification testing no more than once every two years except when there are reasonable grounds to surmise that the prevailing characteristics of the generating unit departs from the as-tested-and-certified values.

Table 1 lists the plants with existing Ancillary Service Procurement Agreement (ASPA); Table 2 lists prospective AS providers not yet certified by NGCP.

Re	gulating Reserve		Contingen	cy Reserve	
AS Provider	Firm (MW)) Non-Firm (MW)	AS Provider	Firm (MW)	Non-Firm (MW)
Luzon Grid	237	525	Luzon Grid	180	395
PANASIA	60	300	SNAP - Binga		136
SNAP - Magat	90	90	SNAP - Magat	60	60
PSALM/NPC - KPSPF	0	90	PSALM/NPC - KPSPP		85
MPPCL AES BESS	20		Therma Luzon - Pagbilao	60	
PMPC	45	45	First Gen - Pantabangan		54
Visayas Grid	40	50	Visayas Grid	56	86
SPESCL-Kabankalan	BESS 40	30	SIPC - PDPP3		30
			CEDC	30	30
Mindanao Grid		165	PEDC	26	26
PSALM/NPC - Agus :	1	30	Mindanao Grid		297
PSALM/NPC - Agus a	2	30	PSALM/NPC - Agus 1		30
PSALM/NPC - Agus		40	PSALM/NPC - Agus 2		30
PSALM/NPC - Pulan	gui 4	65	PSALM/NPC - Agus 4		30
			PSALM/NPC - Agus 5		35
			PSALM/NPC - Agus 6		30
			PSALM/NPC - Agus 7		16
			PSALM/NPC - Pulangui 4		30
			TMI (PB108)		48
			TMI (PB108)		48
Dispatchał	ole Reserve		Reactive Power Support	Black	Start Provider
AS Provider	Firm (MW)	Non-Firm (MW)	AS Provider	A	S Provider
uzon Grid	145	901	Luzon Grid	Luzon Gr	
ANASIA		80	PANASIA		IPC – KPSPP
NAP - Magat		95	SNAP - Ambuklao		– Pantabangan
AOEDC - One Subic		108	SNAP - Binga	SNAP – A	
APGC - Bulacan DPP		48	SNAP - Magat	SNAP – B	-
		360	PSALM/NPC - KPSPP	SNAP – M	
			First Can Dantahanaan	PMPC – A	vion
590 EC		190	First Gen - Pantabangan		
590 EC IP II		20	APRI - MakBan A	Visayas G	irid
590 EC IP II herma Mobile, Inc.		20 145	APRI - MakBan A APRI - MakBan B	Visayas G SIPC – BI	irid DPP
SALM/NPC - KPSPP 590 EC IP II herma Mobile, Inc. isayas Grid IPC - PDPP1	83.8	20	APRI - MakBan A	Visayas G	irid DPP

Table 1: Plants with existing ASPA

SIPC - PDPP3		50	Pagbilao Energy Corp.	Mindanao Grid
SIPC - BDPP	16		Visayas Grid	PSALM/NPC - Pulangui 4
PHINMA (PB101)		32	SIPC - PDPP1	WMPC
PPC - Nabas	6.8		SIPC - PDPP3	
TPC - Carmen	40		PPC - Nabas	
SIPC - PB104	21	7	TPC - Carmen	
CENPRI		26.4	CENPRI	
Mindanao Grid	7.5	327.8	Mindanao Grid	
TMI (PB107)		98	PSALM/NPC - Agus 1	
TMI (PB108)		98	PSALM/NPC - Agus 2	
WMPC		100	PSALM/NPC - Agus 4	
KEGI 2 - Panaon		15.6	PSALM/NPC - Agus 5	
KEGI 3 - Jimenez		16.2	PSALM/NPC - Pulangui 4	
			WMPC	
			KEGI 2 - Panaon	
			KEGI 3 - Jimenez	

 Table 2: List of Prospective Ancillary Service Providers not yet certified by NGCP

Company	Power Plant	Remarks
Luzon Grid		
CE Casecnan Water & Energy Co.,Inc Pagbilao Energy Corporation GNPower Mariveles Co. Ltd. Ingrid Power Holdings Inc. Bac-Man Geothermal Inc. (BGI)	Casecnan Units 1 and 2 Pagbilao Unit 3 Mariveles CFPP Malaya Modular Diesel PP Bac-Man Units 1, 2 and 3	For AS testing. Certified for CR and RPS; With ASPA for RPS only. Certified for CR but w/o ASPA. Certified for RR, CR, DR, RPS but w/o ASPA. Certified for BSS but w/o ASPA.
Belgrove Power Corporation (BPC)	Malaya Thermal Plant	Not yet tested for AS
Giga Ace 4, Inc.	Alaminos BESS	AS tested; Certification not yet released pending completion of GCT
Universal Power Solutions, Inc.	San Manuel BESS	AS tested; Certification not yet released pending completion of GCT
GN Power Dinginin	Dinginin CFPP	AS testing completed
Universal Power Solutions, Inc.	Bataan BESS	For AS testing.
Universal Power Solutions, Inc.	Concepcion BESS	For AS testing.
Universal Power Solutions, Inc.	Gamu BESS	For AS testing.
Universal Power Solutions, Inc.	Lamao BESS	For AS testing.
Universal Power Solutions, Inc.	Magapit BESS	For AS testing.
Millennium Energy, Inc.	Gas Turbine Plant	Certified for RR, DR, RPS but w/o ASPA
Southwest Luzon Power Generation Corp.	SLPGC 3-GT 1 & SLPGC 4-GT 2	Certified for DR, RPS, BSS,but w/o ASPA.
First NatGas Power Corporation	San Gabriel Combined Cycle	Certified for RR but w/o ASPA
Visayas Grid		
Therma Visayas, Inc. (TVI)	TVI	Certified for CR and RPS but w/o ASPA.
Therma Power Visayas, Inc. (TPVI)	TPVI	Certified for DR, RPS, and BSS but w/o ASPA.
East Asia Utilities Corporation (EAUC)	EAUC	Certified for DR, RPS, BSS to expire 12/31/22
Cebu Private Power Corporation (CPPC)	СРРС	Certified for DR, RPS, BSS but w/o ASPA.
Green Core Geothermal Inc. (GCGI)	PGPP1	AS Accreditation is pending upon the completion of GCT.
Green Core Geothermal Inc. (GCGI)	TGPP	For AS testing.
Panay Power Corporation	PPC 1 and 2	PP1 – Certified for CR, DR, RPS, BSS to expire 11/30/22 PPC2 – Certified for DR, RPS to expire 11/30/22
Isabel Ancillary Services Co. Ltd.	Isabel Modular DPP	Certified for RR, CR and RPS but w/o ASPA.
Universal Power Solutions, Inc.	Ormoc BESS	For AS testing.
Universal Power Solutions, Inc.	Tabango BESS	For AS testing.
Universal Power Solutions, Inc.	Ubay BESS	Certified for RR, CR, RPS but w/o ASPA
Universal Power Solutions, Inc.	Toledo BESS	Certified for RR, CR but w/o ASPA
KEPCO SPC Power Corporation	KSPC Power Plant Units 1 & 2	Certified for RPS but w/o ASPA
Palm Concepcion Power Corporation	CFPP	Certified for RR but w/o ASPA
Panay Energy Dev. Corporation	Coal Fired Thermal Plant 3	Certified for RPS but w/o ASPA. With ASPA for PEDC 1 & 2
Mindanao Grid		

Company	Power Plant	Remarks
Therma Marine Inc. (TMI)	TMI Mobile 1 and 2	With ASPA for CR and DR. Certified for RPS (M1 & M2); Certified for BSS (M2).
GNPower Kauswagan Ltd. Co	Kauswagan Power Plant	Certified for CR but w/o ASPA.
Therma South Inc. (TSI)	TSI CFPP	Certified for CR but w/o ASPA.
King Energy Generation Inc. (KEGI)	KEGI Tandag	ASPA for DR pending issuance of PA by ERC.
Universal Power Solutions, Inc. (UPSI)	Malita BESS	Certified for RR and CR.
Universal Power Solutions, Inc.	Jasaan BESS	For AS testing.
Universal Power Solutions, Inc.	Villanueva BESS	For AS testing.
Universal Power Solutions, Inc.	Maco BESS	Certified for RR and CR but w/o ASPA
Fort Pilar Energy, Inc.	Pitogo BESS	
Fort Pilar Energy, Inc.	Sangali BESS	
Southern Philippines Power Corporation	Diesel Power Plant	Previously certified for DR, RPS, BSS – expired 2019

b. Plans for the Procurement of Ancillary Services

Because of the limited number of qualified AS providers, as well as restrictions from available generator capacities and response times of these providers, the Grid's reserve level requirements to sustain reliability objectives are not being met. In NGCP's view, if the existing non-firm contracts are supplemented with committed capacities through enough firm contracts, the reserve capacities would be raised to more comfortable levels.

Consistent with the Department of Energy's instruction to NGCP to fully contract all AS capacities with Firm Contracts, NGCP plans to convert all existing non-firm contracts to firm contracts through a public bidding and subsequent procurement will be through DOE's Competitive Selection Process (CSP). In the event that the reserve market will be operational, NGCP will procure all additional capacities required to fulfill all the required levels of AS in case the contracted capacities are insufficient.

Also, NGCP as the System Operator, conscious of its mandate, ensures that procurement of Ancillary Service is carried out in the least-cost manner. While cooptimization of offered reserves in the energy market would make for efficient energy dispatch, a secondary price cap for reserves—approved by the ERC—would be a welcome cost-control measure.

Appendix 2 – Generation and Load Distribution Per Area as of Feb 2023

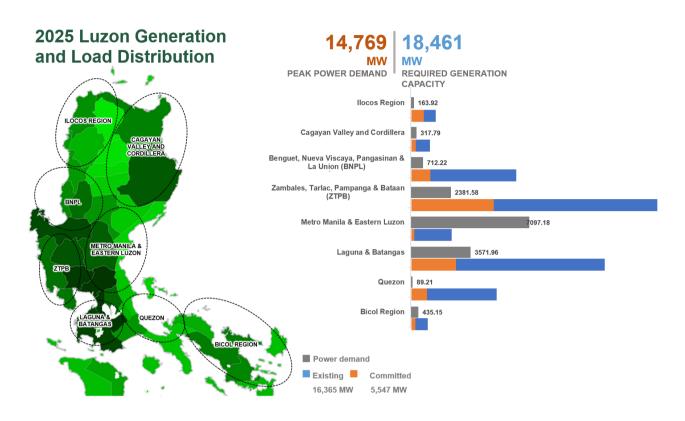


Figure 1 - Projected Luzon Grid Generation and Load Distribution in 2025

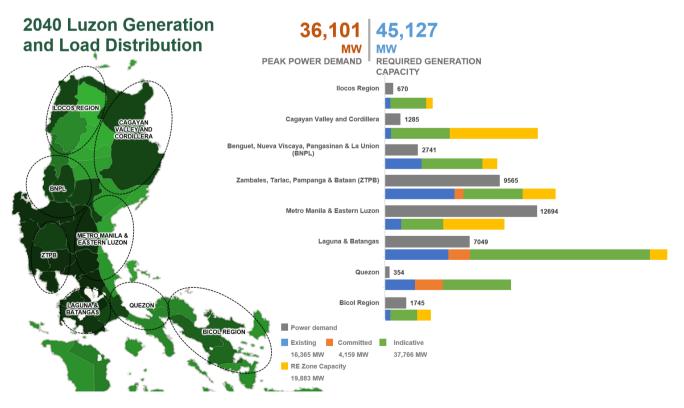
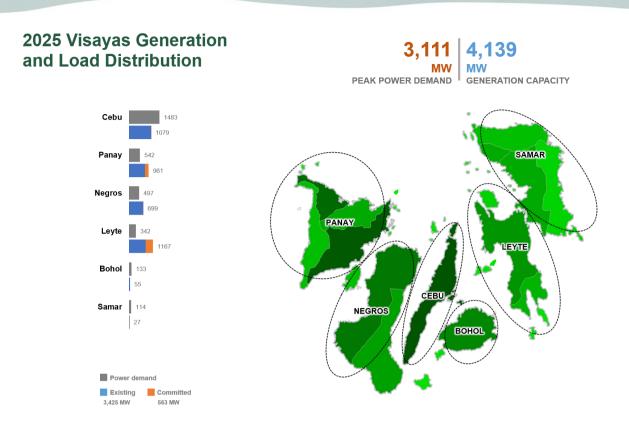



Figure 2 – Projected Luzon Grid Generation and Load Distribution in 2040

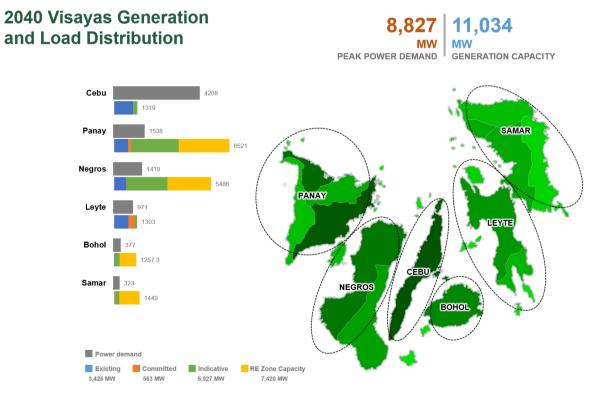


Figure 4 – Projected Visayas Grid Generation and Load Distribution in 2040

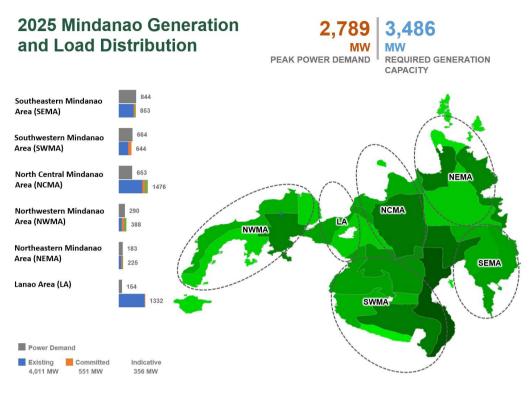


Figure 5 – Projected Mindanao Grid Generation and Load Distribution in 2025

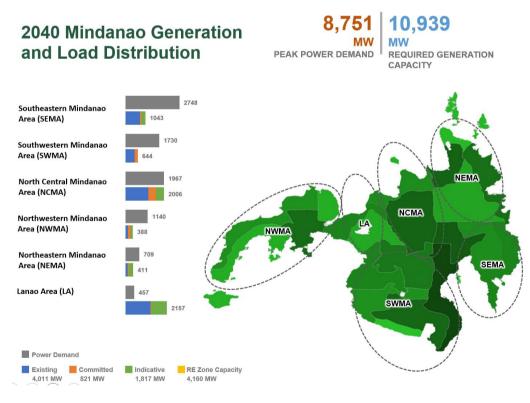


Figure 6 - Projected Mindanao Grid Generation and Load Distribution in 2040

Appendix 3 – Prospective Power Plants

Appendix 3 – Prospec Proponent	Projects	Installed Capacity	Year of	Location
•	FIUJELLS	(MW)	Entry	LUCATION
Luzon 2 Barracuda Energy Corporation (2BEC)	Bay Floating SPP Project	150	2024	San Benito, Bay, Laguna
3 Barracuda Energy Corp	Currimao Energy Storage Project	50	2022	Currimao, Ilocos Norte
5 Barracuda Energy Corporation (5BEC)	Laguna Lake - Los Banos SPP Project	300	2024	
CELL Power Energy Corporation (CPEC)	Labo Energy Storage Project	±20	2024	
JBD Management and Consulting Services,				5
Inc	Pakil Pumped Storage HEPP	S350		Pakil, Laguna
Matuno River Development	Matuno River HEPP	8.661		Bambang, Nueva Vizcaya
Pristine Green Fuel Solutions Corp. (PGFSC)	Sunshine SPP Project	10 MW	2023	
Rizal Wind Energy Corp. (RWEI)	Real WPP Phase 1 Project	45	2023	
Rizal Wind Energy Corp. (RWEI)	Real WPP Project Phase 2	205	2024	
Rizal Wind Energy Corp. (RWEI)	Real WPP Project Phase 3	250	2025	
Sindicatum C-Solar Power Inc. (SCSPI)	Capas SPP Project	31.25	2024	T
Solar Philippines Commercial	SM City Tuguegarao SPP Project	5		Tuguegarao, Cagayan
Solar Philippines Tanauan Solar Philippines Commercial Rooftop	Maragondon 1 SPP Project	1200	2023	Maragondon, Cavite
Project, Inc. (SPCRPI)	Botolan Hybrid Power Plant Project	300	LULJ	
Solar Philippines Commercial Rooftop	Sta. Rosa Nueva Ecija 3 SPP Project	1200		Sta. Rosa and Cabanatuan City, Nueva
Projects, Inc. (SPCRPI)		1200		Ecija
Solar Philippines Commercial Rooftop Projects, Inc. (SPCRPI)	General Santos SPP Project	1200		General Santos, South Cotabato
Solar Philippines Commercial Rooftop				
Projects, Inc. (SPCRPI)	Padre Garcia SPP Project	1200		Lipa and Padre Garcia Batangas
Solar Philippines Commercial Rooftop	Calamba Hybrid Power Plant Project	600	2025	
Project, Inc. (SPCRPI)	Cataliba Hybrid Fower Flant Froject	000	0005	
Solar Philippines Commercial Rooftop Project, Inc. (SPCRPI)	Iba-Palauig Hybrid Power Plant Project	1200	2025	
Solar Power Utilities Generator Corporation			2023	
(SPUGC)	Bato SPP Project	45		
Sunwest Water and Electric Co.	Daraga Ancillary Reserve Diesel Power Plant	50		Daraga, Albay
Sunwest Water and Electric Co.	Kiwalo DPP	100		Kiwalo, Daraga, Albay
Sunwest Water and Electric Co.	Namantao DPP	50		Daraga, Albay
Excellent Energy Resources Inc.	Ilijan Natural Gas Fired Plant Project	1,200		Brgy. Dela Paz Proper, Batangas City
Greencore Power Solutions 3, Inc.	Arayat SPP Project	60		Arayat and Mexico, Pampanga
Universal Power Solutions, Inc.	Bacnotan R- HUB	40		Brgy. Cabugao, Bacnotan, La Union
Universal Power Solutions, Inc.	Subic R-HUB	40		Sitio Agusuhin, Cawag, Subic, Zambales
Universal Power Solutions, Inc.	Concepcion	40		Brgy. Sta. Rosa, Concepcion, Tarlac
Universal Power Solutions, Inc.	San Jose R-HUB	40		Brgy. San Jose del Monte City, Bulacan
Universal Power Solutions, Inc.	Bolo R-HUB	40		Brgy. Bolo, Labrador, Pangasinan
Universal Power Solutions, Inc.	Tuguegarao R-HUB	40		Brgy. Libag Norte, Tuguegarao City, Cagayan
Universal Power Solutions, Inc.	Bayombong R-HUB	40		Brgy. Busilac, Bayombong, Nueva
				Vizcaya
Universal Power Solutions, Inc. Universal Power Solutions, Inc.	Calamba Gumaca R-HUB	40 40		Brgy. Prinza, Calamba, Laguna Brgy. Progreso, Gumaca, Quezon
				Brgy. Mahawan-hawan, Labo,
Universal Power Solutions, Inc.	Labo R-HUB	40		Camarines Norte
Universal Power Solutions, Inc.	Naga R-HUB	40		Brgy. Del Rosario, Naga, Camarines Sur
Universal Power Solutions, Inc. VISAYA	Calbayog R-HUB	20		Brgy. Carayman, Calbayog, Samar
Cell Power Energy Corp.(CPEC)	Padayon BESS	±20	2023	Cebu City, Cebu
	Kabankalan Integrated Renewable Power			Kabankalan, Negros Occidental
SMCGP Philippines Energy Storage Co. Ltd.	Hub Facility (R-Hub)	20		
Triconti Southwind Corporation	Guimaras Strait Wind Power Project	600		Guimaras Brgy. Carayman, Calbayog, Samar
Universal Power Solutions, Inc.	Calbayog R-Hub	20		
MINDAI				
SMC Global Power Corporation (SMGPC)	Villanueva BESS	20		Villanueva, Misamis Oriental
SMC Global Power Corporation (SMGPC)	Malita BESS	20		Malita, Davao Occidental

Appendix 4 – Private Sector Initiated Power Projects

Proposed Generation Facility /	Capacity (MW)		Commissioning
Name of the Project		Location	Year
C041	COMMITTED	POWER PLANTS	
COAL Mariveles CFPP* Phase I - Units 1	150	Mariveles, Bataan	Aug 2023
Phase I - Unit 2	150	Mariveles, Bataan	Sep 2023
Phase I- Unit 3	150	Mariveles, Bataan	Jan 2024
Phase I - Unit 4	150	Mariveles, Bataan	May 2024
			Dec 2025
Phase II - Unit 5	150	Mariveles, Bataan Mariveles, Bataan	
Phase II - Unit 6	150	Mariveles, Bataan Mariveles, Bataan	Mar 2026
Phase II- Unit 7 Phase II - Unit 8	150 150	Mariveles, Bataan Mariveles, Bataan	Jun 2026
Masinloc Power Plant - Unit 4*	350	Mariveles, Bataan Masinloc, Zambales	Sep 2026 Jun 2025
	350		Dec 2025
- Unit 5*	668	Masinloc, Zambales Bray, Villa Ibaba, Atimonan, Quezen Brayinco	
A1E CFPP - Unit 1*		Brgy. Villa Ibaba, Atimonan, Quezon Province	TBD
A1E CFPP - Unit 2*	668	Brgy. Villa Ibaba, Atimonan, Quezon Province	TBD
Refinery Solid Fuel-Fired Boiler Project - Phase 3* Sub-Total Coal	44.4 3,280.4	Brgy. Alangan, Limay, Bataan	Mar 2023
OIL-BASED	ULOUIT		
11.04 MW Capas Bunker C-Fired DPP*	11.04	Brgy. Sto. Rosario, Capas, Tarlac	Jun 2023
Sub-Total Oil-based	11.04		
NATURAL GAS	650	Deers The bases Date Councils Tales of Deerbiller	TDD
Energy World Corporation 650 MW Gas Fired CCPP*	650	Brgy. Ibabang Polo, Grande Island, Pagbilao, Quezon	TBD
Batangas CCPP - Phase 1, Unit 1*	437.5	Brgy. Dela Paz Proper, Batangas City	Sep 2024
Batangas CCPP - Phase 1, Unit 2*	437.5	Brgy. Dela Paz Proper, Batangas City	Sep 2024
Batangas CCPP - Phase 1, Unit 3*	437.5	Brgy. Dela Paz Proper, Batangas City	Dec 2024
Batangas CCPP - Phase 2	437.5	Brgy. Dela Paz Proper, Batangas City	TBD
BCEI Natural Gas-Fired Power Plant	1,100	Brgys. Libjo and Malitam, Batangas City	Jan 2027
Sub-Total Natural Gas	3,500		
GEOTHERMAL			1 0000
Palayan Binary Power Plant*	29	Brgy. Nagotgot, Manito, Albay	Jun 2023
Tanawon GPP*	20	Brgy. Capuy, Sorsogon City	Dec 2024
Tiwi Binary Geothermal Project	17	Tiwi, Albay	Dec 2023
Sub-Total Geothermal	66		
Biyao HEPP	0.8	Balbalan, Kalinga	Dec 2023
Colasi HEPP	4	Mercedes, Camarines Norte	Apr 2023
Matuno HEPP*	8.66	Bambang, Nueva Vizcaya	Apr 2023
Laguio (Laginbayan) Malaki 1 HEPP	1.6	Mauban, Quezon	Aug 2023
Mariveles HEPP	0.6	Mariveles, Bataan	Mar 2023
Ibulao HEPP*	4.5	Lagawe, Ifugao	Apr 2023
Labayat River (Lower Cascade) HEPP*	1.4	Real, Quezon	May 2023
Lalawinan HEPP*	3	Real, Quezon	Dec 2024
Tibag HEPP*	5	Real, Quezon	May 2023
Rangas HEPP	2.4	Goa & Tigaon, Camarines Sur	Dec 2025
Dupinga HEPP	4.8	Gabaldon, Nueva Ecija	Jul 2023
Kapangan HEPP*	60	Kapangan and Kibungan, Benguet	Dec 2025
Tignoan River (Upper Cascade) HEPP*	1.5	Real, Quezon	Dec 2025
Daet HEPP	5	Daet, Camarines Norte	Dec 2025
Tubao HEPP	1.5	Tubao, La Union	Dec 2025
Likud 2 HEPP	0.56	Asipulo, Ifugao	Jul 2023
Asin-Hungduan HEPP	9.8	Kiangan, Ifugao	Jun 2024
Ibulao 1 HEPP	7.6	Kiangan, Ifugao	Apr 2023
Dipalo HEPP	4.15	San Quintin, Pangasinan	Dec 2025

Table 1: Private Sector Initiated Power Projects in Luzon as of 28 February 2023

Sub-Total Hydro 146.87 SIGMASS Sabela Rice Husk-Fired BPP Project 5 Isabela May 2023 FEAC Biogas Power Plant Project 2.4 Apalit, Pampanga Aug 2023 Sub-Total Biomass 8.6 Socreption 15P- Phase 3 33.34 Concepcion, Tarlac May 2023 • Phase 4 108.4 Concepcion, Tarlac May 2023 • Phase 4 108.4 Concepcion, Tarlac May 2023 • Phase 4 108.4 Concepcion and Tarlac City, Tarlac Dec 2025 Concepcion Tarlac Particle City, Tarlac Dec 2025 Dec 2025 Concepcion Tarlac May 2023 Statal III Solar PV Power Project 1.5 Mabalacat, Pampanga May 2023 Lato Hydrid SPP 87.584 Burgos, Tioors Norte Apr 2023 Arayat, Mexico, Pampanga May 2023 Lato Hydrid SPP 87.58 Basa, Rizal Apr 2023 Arayat, Mexico, Pampanga Apr 2023 Lato Hydrid SPP 87.58 Bras, Rizal Apr 2023 Arayat, Mexico, Pampanga Apr 2023 Lato Hydrid SPP 87.5 Bra	Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
Gabela Rice Husk-Fried BPP Project5LabelaMay 2023Gabela Rice Husk-Fried BPP Project2.4Apalit, PamanagaAug 2023GBC Blogs Power Plant Project1.2Candelaria, QuezonJan 2024Sub-Total Blomass8.5SSOLAR POWER PROJECT	Sablan 1 HEPP Sub-Total Hydro		Sablan, Benguet	Nov 2025
EFAC Biogas Power Plant Project 2.4 Apalti, Pampanga Aug 2023 SGBC Biogas Power Plant Project 1.2 Candelaria, Quezon Jan 2024 SGBC Biogas Power Plant Project 3.3.4 Concepcion, Tarlac May 2023 • Phase 4 108.4 Concepcion arlar Tarlac May 2023 • Phase 4 108.4 Concepcion arlar Tarlac May 2023 • Phase 4 13.6 Mabalocat, Pamparsinan May 2023 • Phase 4 13.6 Mabalocat, Pamparsinan May 2023 • Phase 12 30.933 Arayat, Mexito, Pampanga Apr 2023 • Phase 2 30.933 Arayat, Mexito, Pampanga Apr 2023 • Phase 12 10.4 Naga City, Castalat 6 Bry, Phase 13 May 2023 • Phase 13 10.4 Penaranda, Nueva Ecja May 2023 • Phase 14 Penaranda, Nueva Ecja May 2023 • Phase 15 11.6 Penaranda, Nueva Ecja May 2023 • Phase 16 10.4 Penaranda, Nueva Ecja May 2023 • Phase 18 10.6 <t< td=""><td>BIOMASS</td><td></td><td></td><td></td></t<>	BIOMASS			
FGBC Biogas Power Plant Project 1.2 Candelaría, Quezon Jan 2224 Sub-Total Biomass 8.5 SQLAR POWER PROJECT - Cancepcion J SPP - Phase 3 33.34 Concepcion, Tariac May 2023 Ontexpcion Tariac 2 SPP 171.6 Concepcion, Tariac City, Tariac Dec 2025 Sayang-Buyalon SPP 87.594 Bugalon, Pangasinan May 2023 Sayang-Buyalon SPP 87.894 Buabacat, Pamagnaga May 2023 Sayang-Buyalon SPP 87.844 Buabacat, Pamagnaga May 2023 Sayang-Buyalon SPP 82.488 Lal-to And Gattaran, Cagayan Sep 2023 Sayala Mexilos SPP Phase 2 30.933 Arayat, Mexilos, Pamagnaga Apr 2023 Varyal Mexilos SPP Phase 2 30.933 Arayat, Mexilos, Pamagnaga Apr 2023 Carningor SPP 48.118 Currimao, Tinac, Surgang Bangkal, San May 2023 Currimao SPP 48.118 Currimao, Tarac (Ty, Tarlac Dec 2025 Sana Rosa Nueva Ecija 2 SPP - Phase 1 22.44 San Marcetino SPP May 2023 - Phase 2 171.65 Penaranda, Nueva				
Sub-Total Biomass 8.6 Solu A POWER PROJECT May 2023 •Phase 4 108.4 Concepcion, Tariac May 2023 •Phase 4 108.4 Concepcion, Tariac May 2023 •Phase 4 108.4 Concepcion, Tariac May 2023 •Phase 4 107.6 Concepcion Tariac May 2023 •Phase 2 87.594 Burgos, Licos, Norte Apr 2023 •Phase 4 10.6 Mabalaczt, Pampanga May 2023 •Phase 7 57.588 Bugallon, Panganga May 2023 •Phase 7 57.5 Bars, Kizal Apr 2023 •Phase 7 57.6 Bars, Kizal Apr 2023 •Phase 12 Correspoin and Tariac City, Caraniar 58 For Dec 2025 •Phase 13 Concepcion and Tariac City, Tariac Dec 2025 •Phase 14 -Phase 15 Concepcion, Tariac Dec 2025 •Phase 14				
SIGAR POWER PROJECT Soncepcion 1 SPP - Phase 3 Signar Power Project Phase 4 Ph	FQBC Biogas Power Plant Project		Candelaria, Quezon	Jan 2024
Concepcion 1 SPP - Phase 3 33.4 Concepcion, Tarlac May 2023 Phase 4 108.4 Concepcion and Tarlac City, Tarlac May 2023 Concepcion Tarlac 2 SPP 17.15 Concepcion and Tarlac City, Tarlac Paraga Sayanga-Bugalon SPP 87.594 Burgos, Iucos Norte AP 7023 Sayanga-Bugalon SPP 75.088 Bugalon, Pangasinan May 2023 Latol Hybrid SPP 82.488 Latol and Gattaran, Cagyan AMy 2023 Latol Hybrid SPP 82.488 Latol and Gattaran, Cagyan AMy 2023 Latol Hybrid SPP 82.488 Latol and Gattaran, Cagyan AMY 2023 Latol Hybrid SPP 46.5 Baras, Riral AP 7023 Arayat-Mexico SPP - Phase 2 30.933 Arayat, Mexico, Pampanga Apr 2023 Lurimao SPP 40.1 Katol Kato		8.6		
 Phase 4 108.4 Concepcion Tarlac 2 SPP 171.6 Concepcion Tarlac 2 SPP 171.6 Concepcion Tarlac 2 SPP 175.08 Bugalon, Pangasinan May 2023 Caganga Bugalon SPP 75.088 Bugalon, Pangasinan May 2023 Laklo Hybrid SPP 82.488 Laklo and Gattaran, Cagayan Sep 2023 Phanga SPP 48.118 Currimao, Itocos Norte Jun 2023 Arayat-Mexico SPP - Phase 2 30.933 Arayat, Mexico, Pampanga Apr 2023 Currimao SPP 48.118 Currimao, Itocos Norte Jun 2023 Aval Green Naga SPP Project 40.4 Naga SPP VAI Green Naga SPP Project 40.4 Naga SPP Yalonga SPP 41.18 Currimao, Itocos Norte Jun 2023 Aval Green Naga SPP Project 40.4 Naga SPP Yalonga SPP Ya				
Concepcion Tarlac 2 SPP171.6Concepcion and Tarlac City, TarlacDe: 2025Locos Norte SPP*87.594Burgso, Locos NorteApr 2023Sagnag-Bugaldon SPP*75.08Bugalton, PangasinanMay 2023Lalo Is Norte SPP13.6Mabalacat, PampangaMay 2023Jackas III Solar PV Power Project13.6Mabalacat, PampangaMay 2023Jacka Io SPP67.5Baras, RizalApr 2023Varyat-Mexico SPP - Phase 230.933Arayat, Mexico, PampangaApr 2023Varyat-Mexico SPP - Phase 230.933Arayat, Mexico, PampangaMay 2023Linguitus SPP48.118Currimao, Liccos NorteJun 2023AVI Green Naga SPP Project40.4Naga City, Camarines SurDec 2025Concepcion Tarlac 2 SPP200Concepcion and Tarlac City, TarlacDec 2025Janguitus SPP99.98Talutguty, Nueva EcijaMar 2023Languitus SP99.99Penaranda, Nueva EcijaMar 2023Jangaba Supa Surves Ecija SPP Phase 122.4San Marcelina, ZambalesAug 2023Augutas SPP450Tayabas, PapilaiaDec 2025Sand Rosa Ivera Ecija SP Phase 192.799Mabalcart City, Pampanga andDec 2025Sand Bellen Solar 2 PP. Phase 192.799Mabalcart City, and Magalang, Pampanga andDec 2026Aphase 28.03San Marcelina, ZambalesAug 2023Aphase 292.799Mabalcart City, and Magalang, Pampanga andDec 2026Concepcion, TarlacPhase 292.799Mabalcart City				•
IdeoxMarket SPP*87.594Burgos, Tucos NorteApr 2023Cayanga-Bugalion SPP*75.088Bugalion, PangasinanMay 2023Kaslagi III Solar PV Power Project13.6Mabatact, PannangaMay 2023Lat lo Hybrid SP82.488Lat-lo and Gattarn, CagayanSep 2023Vingay SPP67.5Baras, RizalApr 2023Arryat-Mexico SPP - Phase 230.933Arayat, Mexico, PannangaApr 2023Arryat-Mexico SPP - Phase 230.933Arayat, Mexico, PannangaApr 2023Arvist Kewico SPP - Phase 240.4Naga City, Camarines SurDec 2024Bulacan 2 SPP*17.603Brgy, Casalat & Brgy, Pasong Bangkal, San Itdefonso, BulacanMay 2023Idagtog SPP99.98Talugtug, Newa EcijaMar 2025Oncepcion Tarlac 2 SPP200Concepcion and Tarlac City, TarlacDec 2025Phase 10108.4Penaranda, Nueva EcijaPenaranda, Nueva Ecija- Phase 11224San Marcelino, ZambalesAug 2023an Marcelino SPP - Phase 122.4San Marcelino, ZambalesAug 2023san Marcelino SPP - Phase 122.799Mabatact City, and Magalang, Panpanga andDec 2024Concepcion, TarlacPhase 292.799Mabatact City and Magalang, Panpanga andDec 2024Concepcion, TarlacConcepcion, TarlacConcepcion, TarlacConcepcion, Tarlac- Phase 492.799Mabatact City and Magalang, Panpanga andDec 2024Concepcion, TarlacConcepcion, TarlacConcepcion, Tarlac <td< td=""><td></td><td></td><td></td><td></td></td<>				
Cayanga-Bugalion SPP*75.088Bugalion, PangasinanMay 2023Raslag III Solar PV Power Project13.6Mabalcat, PampangaMay 2023Arayal, Mexico SPP67.5Baras, RizalApr 2023Vinugay SPP67.5Baras, RizalApr 2023Varyal-Mexico SPP - Phase 230.933Arayal, Mexico, PampangaApr 2023Durriman SPP48.118Curriman, Ilocos NorteJun 2023PAVI Green Naga SPP Project40.4Naga City, Camarines SurDec 2024PAVI Green Naga SPP Project40.4Naga City, Camarines SurDec 2025Jaugutg SPP99.98Talugtun, Nueva EcijaMar 2025Concepcion Tarlac Z SPP200Concepcion and Tarlac City, TarlacDec 2025Pantanda, Nueva Ecija- Phase 18108.4Penaranda, Nueva EcijaDec 2025- Phase 19108.4Penaranda, Nueva EcijaDec 2025- Phase 19108.4Penaranda, Nueva EcijaDec 2025- Phase 1122.4San Marcelino, ZambalesAug 2023- Phase 280San Marcelino, ZambalesAug 2023- Phase 1122.4San Marcelino, TarlacDec 2025Sapang Balen Solar 1 PP96.23.5Mabalacat City, and Magalang, Pampanga andDec 2025- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 392.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 5 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Bashag ITI Solar PV Power Project13.6Mabalacat, PampangaMay 2023Lakio Hybrid SPP82.488Lakio and Gattaran, CagayanSep 2023Ningay SPP67.5Baras, RizalApr 2023Aryat Kwito SPP - Phase 230.933Aryat, Mexio, PampangaApr 20232VI Green Naga SPP Project40.4Naga City, Camarines SurDec 2024Bulacan 2 SPP*17.603Birgy, Casala & Brgy, Pasong Bangkal, SanMay 2023Iddefonso, BulacanIddefonso, BulacanMay 2023Idugty SPP200Conception and Tartac City, TartacDec 2025Santa Rosa Nueva Ecija 2 SPP*200Conception and Fartac City, TartacDec 2025Phase 18108.4Penaranda, Nueva Ecija-Phase 10Dec 2025and Rosa Nueva Ecija 2 SPP450Tayabas, PagbilaoDec 2025Santa Rosa Nueva Ecija 2 SPP96.25San Marcelino, ZambalesAug 2023• Phase 2171.6Penaranda, Nueva EcijaAug 2023• Phase 280San Marcelino, ZambalesAug 2023• Phase 280San Marcelino, ZambalesAug 2023• Phase 392.799Mabalacat City, and Magalang, Pampanga andDec 2025• Phase 492.799Mabalacat City, and Magalang, Pampanga andDec 2026• Phase 592.799Mabalacat City, and Magalang, Pampanga andDec 2026• Phase 492.799Mabalacat City, and Magalang, Pampanga andDec 2026• Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2				
Lal-lo April SPP Project April SPP				
Phogay SPP67.5Baras, RizalApr 2023Arayat.Mexico SPP - Phase 230.933Arayat, Mexico, PampangaApr 2023PAVI Green Naga SPP Project40.4Naga City, Camarines SurDec 2024PAVI Green Naga SPP Project40.4Naga City, Camarines SurDec 2024Bryt. Casalat & Brgy. Pasong Bangkal, SanMay 2023Ildefonso, BulacanMay 2023Ildefonso, BulacanMay 2023Green Naga SPP99.98Talugtug, Neva EcijaMar 2025Santa Rosa Nueva Ecija 2 SPP - Phase 1APenaranda, Nueva EcijaDec 2025• Phase 1B108.4Penaranda, Nueva EcijaDec 2025and Rosa Nueva Ecija 2 SPP - Phase 122.4San Marcelino, ZambalesAug 2023• Phase 2171.6Penaranda, Nueva EcijaDec 2025Sand Marcelino SPP - Phase 122.4San Marcelino, ZambalesAug 2023• Phase 280San Marcelino, ZambalesAug 2023• Sangang Balen Solar 1 PP96.236Mabalacat City and Magalang, Pampanga andDec 2024- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2024- Phase 392.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 692.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 792.799Mabalacat City and Magalang, Pampanga andDe				
Arayat-Mexico SPP - Phase 230.933Arayat, Mexico, PampangaApr 2023Lurrimao, IDoos NorteJun 2023AVI Green Naga SPP Project40.4Naga City, Camarines SurDec 2024Bulacan 2 SPP*17.603Itdefonso, BulacanMay 2023Ialugtug SPP99.98Talugtug, Nueva EcijaMar 2025Concepcion Taria 2 SPP200Concepcion and Tariac City, TariacDec 2024. Phase 18108.4Penaranda, Nueva EcijaMar 2025. Phase 19171.6Penaranda, Nueva EcijaDec 2025. Phase 19108.4Penaranda, Nueva EcijaDec 2025. Phase 19124.4San Marcelino, ZambalesAug 2023. Phase 2171.6Penaranda, Nueva EcijaDec 2025Sand Marcelino, SanbatesAug 2023Aug 2023. Phase 280San Marcelino, ZambalesAug 2023. Phase 280San Marcelino, ZambalesAug 2023. Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025. Sapang Balen Solar 2 PP. Phase 192.799Mabalacat City and Magalang, Pampanga andDec 2025. Phase 392.799Mabalacat City and Magalang, Pampanga andDec 2025. Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025. Dec Total Solar2432.883Concepcion, TariacConcepcion, Tariac. Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025. Dub-Total Solar2432.883Paupadud, Ilcos NorteMay 2023<	5		Lal-lo and Gattaran, Cagayan	
Lurrimas SPP 48.118 Curriman, Itoos Norte 10, 2023 PAVI Green Naga SPP Project 40.4 Naga City, Camarines Sur Dec 2024 Bulacan 2 SPP* 17.603 Brgy, Casalat & Brgy, Pasong Bangkal, San May 2023 Idugtug SPP 200 Conception and Tarta City, Tartac Dec 2025 Santa Rosa Nueva Ecija 00.000 - Phase 18 108.4 Penaranda, Nueva Ecija 00.000 - Phase 2 171.6 Penaranda, Nueva Ecija 00.000 - Phase 2 171.6 Penaranda, Nueva Ecija 00.000 - Phase 2 171.6 Penaranda, Nueva Ecija 00.000 - Phase 2 800 San Marcelino, Zambales 00.000 - Phase 2 92.799 Mabalacat City and Magalang, Pampanga and 00.000 - Phase 3 92.799 Mabalacat City and Magalang, Pampanga and 00.000 - Phase 3 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 5 02.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 5 02.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 5 02.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 5 02.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 5 2.790 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and 00.0000 - Phase 4 25 Pagudpud, Itocos Norte 00.0000 - Phase 4 25 Pagudpud, I	5 ,		Baras, Rizal	
PAVI Green Naga SPP Project 40.4 Naga City, Camarines Sur Dec 2024 Bry, Casalat & Brgy, Pasong Bangkal, San May 2023 Ifdigtug SPP 1988 17.603 Ifdefons, Bulacan May 2023 Concepcion Tarlac 2 SPP Phase 1A Penaranda, Nueva Ecija Phase 18 108.4 Penaranda, Nueva Ecija Phase 18 108.4 Penaranda, Nueva Ecija Phase 18 108.4 Penaranda, Nueva Ecija Phase 2 171.6 Penaranda, Nueva Ecija Phase 2 171.6 Penaranda, Nueva Ecija Phase 2 80 San Marcelino, Zambales Aug 2023 Phase 2 80 San Marcelino, Zambales Aug 2023 Sapang Balen Solar 1 PP 96.236 Mabalcat City, Panpanga Dec 2025 Sapang Balen Solar 1 PP 96.236 Mabalcat City and Magalang, Pampanga and Dec 2024 Concepcion, Tarlac Phase 2 92.799 Mabalcat City and Magalang, Pampanga and Dec 2024 Concepcion, Tarlac Phase 3 92.799 Mabalcat City and Magalang, Pampanga and Dec 2024 Concepcion, Tarlac Phase 4 92.799 Mabalcat City and Magalang, Pampanga and Dec 2025 Concepcion, Tarlac Phase 4 92.799 Mabalcat City and Magalang, Pampanga and Dec 2025 Concepcion, Tarlac Phase 4 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 5 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 4 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 5 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 4 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 5 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 4 92.799 Mabalcat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Phase 4 25 Pagudpud, Liccos Norte Matod Caunayan WPP Project Phase 1 80 Pagudpud, Liccos Norte Matod Caunayan WPP Project Phase 1 80 Pagudpud, Liccos Norte Matod Caunayan WPP Project Phase 1 80 Pagudpud, Liccos Norte Phase 2 25 Pagudpud, Liccos Norte Phase 2 25 Pagudpud, Liccos Norte Matod Caunayan WPP Project Phase 1 80 Pagudpud, Liccos Norte Phase 2 25 Pagudpud, Liccos Norte Phase 2 25 Pagudpud, Liccos Norte Phase 2 25 Pagudpud, Liccos Norte Phase 2 2	Arayat-Mexico SPP - Phase 2	30.933	Arayat, Mexico, Pampanga	Apr 2023
Bulacan 2 SPP*17.603Brgy, Casalat & Brgy, Pasong Bangkal, San Idéfonso, Bulacan Idéfonso, Bulacan Idéfonso, Bulacan Idéfonso, BulacanMay 2023 Idéfonso, Bulacan Idéfonso, BulacanFalugtug SPP99.98Tatugtug, Nueva EcijaMar 2025 Penaranda, Nueva Ecija- Phase 18- Phase 18Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 18108.4Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 280San Marcelino, ZambalesAug 2023- Phase 280San Marcelino, ZambalesAug 2023- Phase 292.799Mabalacat City, Angalang, Pampanga and Concepcion, TarlacDec 2024 Concepcion, Tarlac- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 692.799Abalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepci	Currimao SPP	48.118	Currimao, Ilocos Norte	Jun 2023
Bulacan 2 SPP*17.603Brgy, Casalat & Brgy, Pasong Bangkal, San Idéfonso, Bulacan Idéfonso, Bulacan Idéfonso, Bulacan Idéfonso, BulacanMay 2023 Idéfonso, Bulacan Idéfonso, BulacanFalugtug SPP99.98Tatugtug, Nueva EcijaMar 2025 Penaranda, Nueva Ecija- Phase 18- Phase 18Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 18108.4Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 2171.6Penaranda, Nueva Ecija- Phase 280San Marcelino, ZambalesAug 2023- Phase 280San Marcelino, ZambalesAug 2023- Phase 292.799Mabalacat City, Angalang, Pampanga and Concepcion, TarlacDec 2024 Concepcion, Tarlac- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 692.799Abalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepci	PAVI Green Naga SPP Project	40.4	Naga City, Camarines Sur	Dec 2024
Talugtug SPP 99.88 Talugtug, Ivex Ecja Mar 2025 Concepcion Tarlac 2 SPP 200 Concepcion and Tarlac City, Tarlac Dec 2025 Santa Rosa Nueva Ecja P- Phase 1A Penaranda, Nueva Ecja - Phase 2 171.6 Penaranda, Nueva Ecja - Phase 2 171.6 Penaranda, Nueva Ecja - Phase 2 171.6 Penaranda, Nueva Ecja - Phase 2 80 San Marcelino. Zambales Aug 2023 • Phase 2 80 San Marcelino. Tanlac Concepcion, Tarlac - Phase 3 92.799 Mabalacat City and Magalang, Pampanga and Dec 2024 Concepcion, Tarlac - Phase 3 92.799 Mabalacat City and Magalang, Pampanga and Dec 2025 Concepcion, Tarlac - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2025 Concepcion, Tarlac - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2025 Concepcion, Tarlac - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - Phase 3 Concepcion, Tarlac - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - Phase 4 25 Pagudpud, Ilocos Norte Mag 2023 • Phase 4 25 Pagudpud, Ilocos No	Dulacan 2 CDD*	17 600	Brgy. Casalat & Brgy. Pasong Bangkal, San	May 2022
Concepcion Tartac 2 SPP200Concepcion and Tartac City, TartacDec 2025Santa Rosa Nueva Ecija 2 SPP - Phase 1APenaranda, Nueva Ecija Phase 2171.6Penaranda, Nueva Ecija-Iayabas SPP450Tayabas, PagbilaoDec 2025Santa Rosa Nueva Ecija 1224San Marcelino, ZambalesAug 2023• Phase 280San Marcelino, ZambalesAug 2023Sapang Balen Solar 1 PP96.236Mabalacat City, PampangaDec 2025Sapang Balen Solar 2 PP - Phase 192.799Mabalacat City and Magalang, Pampanga andDec 2024- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025Sapang Balen Solar 2 PP - Phase 192.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 392.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025Concepcion, Tartac-Phase 3Dec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025Concepcion, Tartac-Phase 492.799- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025Concepcion, Tartac-Phase 492.799- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025 <td>Bulacan 2 SPP*</td> <td>17.003</td> <td></td> <td>May 2023</td>	Bulacan 2 SPP*	17.003		May 2023
Concepcion Tartac 2 SPP200Concepcion and Tartac City, TartacDec 2025Santa Rosa Nueva Ecija 2 SPP - Phase 1APenaranda, Nueva Ecija Phase 2171.6Penaranda, Nueva Ecija-Iayabas SPP450Tayabas, PagbilaoDec 2025Santa Rosa Nueva Ecija 1224San Marcelino, ZambalesAug 2023• Phase 280San Marcelino, ZambalesAug 2023Sapang Balen Solar 1 PP96.236Mabalacat City, PampangaDec 2025Sapang Balen Solar 2 PP - Phase 192.799Mabalacat City and Magalang, Pampanga andDec 2024- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025Sapang Balen Solar 2 PP - Phase 192.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 392.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025Concepcion, Tartac-Phase 3Dec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025Concepcion, Tartac-Phase 492.799- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025Concepcion, Tartac-Phase 492.799- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2025 <td>Talugtug SPP</td> <td>99.98</td> <td></td> <td>Mar 2025</td>	Talugtug SPP	99.98		Mar 2025
Santa Rosa Nueva Ecija 2 SPP - Phase 1A - Phase 1B 108.4 Penaranda, Nueva Ecija - Phase 2 Tayabas SPP 450 Tayabas, Pagbilao Phase 1 224 San Marcelino, Zambales Aug 2023 San Marcelino, Zambales - Phase 2 - Phase 2 - Phase 2 - Phase 2 - Phase 3 - Phase 3 - Phase 4 - Phase 4 - Phase 5 Sub-Total Solar - Phase 1 - Phase 5 - Phase 5 - Phase 1 - Phase 2 - Phase 5 - Phase 2 - Phase 2 - Phase 3 - Phase 4 - Phase 5 - Phase 5 - Phase 4 - Phase 5 - Phase 5 - Phase 1 - Phase 2 - Phase 3 - Phase 3 - Phase 3 - Phase 3 - Phase 4 - Phase 4 - Phase 5 - Phase 4 - Phase 4 - Phase 5 - Phase 5 - Phase 5 - Phase 4 - Phase 3 - Phase 5 - Phase 3 - Phase 4 - Phase 3 - Phase 4 - Phase 3 - Phase 3 - Phase 2 - Phase 3 - Phase 2 - Phase 3 - Phase 2 - Phase 3 - Phase 2 - Phase 3 - Phase 4 - Phase 3 - Phase 3 - Phase 3 - Phase 3 - Phase 4 - Phase 4 - Phase 3 - Phase 4 - Phase 4 - Phase 3 - Phase 4 - Phase 4 - Phase 4 - Phase 3 - Phase 4 -				
Phase 1B108.4Penaranda, Nueva EcijaTayabas SPP171.6Penaranda, Nueva EcijaTayabas SPP450Tayabas, PagbilaoDec 2025San Marcelino SPP - Phase 1224San Marcelino. ZambalesAug 2023• Phase 280San Marcelino. ZambalesAug 2023sapang Balen Solar 1 PP96.256Mabalacat City, and Magalang, Pampanga andDec 2024Sapang Balen Solar 2 PP. Phase 127.99Mabalacat City and Magalang, Pampanga andDec 2024- Phase 292.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 392.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 492.799Mabalacat City and Magalang, Pampanga andDec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2026- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2026- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2026- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2026Concepcion, TarlacConcepcion, TarlacConcepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2026Concepcion, TarlacConcepcion, TarlacConcepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga andDec 2026Concepcion, TarlacConcepcion, TarlacConcepcion, Tarlac- Phase 592.799Pagudpud, Ilocos NorteMag 2023- Phase 6 <td></td> <td></td> <td></td> <td></td>				
- Phase 2 171.6 Penaranda, Nueva Ecija Fayabas SPP 450 Tayabas, Pagbilao Dec 2025 San Marcelino SPP - Phase 1 224 San Marcelino, Zambales Aug 2023 • Phase 2 80 San Marcelino, Zambales Aug 2023 Sapang Balen Solar 1 PP 96.236 Mabalacat City, Pampanga Dec 2025 Sapang Balen Solar 2 PP - Phase 1 92.799 Mabalacat City and Magalang, Pampanga and Dec 2024 Concepcion, Tarlac - Phase 2 92.799 Mabalacat City and Magalang, Pampanga and Dec 2025 Dec 2025 - Phase 3 92.799 Mabalacat City and Magalang, Pampanga and Dec 2025 Dec 2025 - Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Dec 2026 - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Dec 2026 - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Dec 2026 - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Dec 2026 - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Dec 2026 - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 20		108.4	· · · · · · · · · · · · · · · · · · ·	
Fayabas SPP450Tayabas, PagbilaoDec 2025San Marcelino, SPP - Phase 1224San Marcelino, ZambalesAug 2023• Phase 280San Marcelino, ZambalesAug 2023Sapang Balen Solar 1 PP96,236Mabalacat City, PampangaDec 2024Sapang Balen Solar 2 PP- Phase 192,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2024- Phase 292,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025- Phase 392,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025- Phase 492,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025- Phase 592,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 592,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 592,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 592,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 592,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 592,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 692,799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026- Phase 730Calatagan, Lian, BatangasDec 2024- Phase 825Pagudpud, Ilocos NorteMay 2023				
San Marcelino SPP - Phase 1 Phase 2 Phase 2 Phase 2 Phase 2 Phase 2 Phase 2 Phase 1 Phase 1 Phase 2 Phase 2 Phase 2 Phase 2 Phase 2 Phase 2 Phase 2 Phase 3 Phase 3 Phase 3 Phase 4 Phase 5 Paurotal Solar Phase 5 Paurotal Solar Phase 5 Paurotal Solar Phase 3 Phase 5 Paurotal Solar Phase 4 Phase 5 Paurotal Solar Phase 5 Paurotal Solar Phase 1 Phase 2 Phase 5 Paurotal Solar Phase 2 Phase 2 Phase 3 Phase 3 Phase 3 Phase 4 Phase 3 Phase 3 Phase 4 Phase 3 Phase 4 Phase 4 Phase 3 Phase 3 Phase 5 Paurotal Solar Phase 4 Phase 3 Phase 3 Phase 4 Phase 4 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 3 Phase 3 Phase 3 Phase 3			· · · · · · · · · · · · · · · · · · ·	Dec 2025
•Phase 280San Marcelino, ZambalesAug 2023Sapang Balen Solar 1 PP96.236Mabalacat City, PampangaDec 2025Sapang Balen Solar 2 PP- Phase 192.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2024- Phase 292.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2024- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2025- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2025- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2026- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2026- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TartacDec 2026Concepcion, TartacConcepcion, TartacDec 2026Concepcion, TartacConcepcion, TartacDec 2026Concepcion, TartacConcepcion, TartacDec 2026Concepcion, TartacDec 2025Dec 2026Sub-Total Solar2,432.883Dec 2025Salaai and Caunayan WPP70Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteMay 2023- Phase 325Pagudpud, Ilocos NorteAug 2023- Phase 425Pagudpud, Ilocos NorteJul 2023- Phase 325Pagudpud, Ilocos NorteDec 2025Sub-Total WindZ60Sun TartacJul 2023 </td <td></td> <td></td> <td></td> <td></td>				
Sapang Balen Solar 1 PP96.236Mabalacat City, PampangaDec 2025Sapang Balen Solar 2 PP- Phase 192.799Mabalacat City, and Magalang, Pampanga and Concepcion, TarlacDec 2024 Concepcion, Tarlac- Phase 292.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2024 Concepcion, Tarlac- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 692.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 730Calatagan, Lina, BatangasDec 2026 Concepcion, Tarlac- Phase 825Pagudpud, Ilocos NorteMag 2023 Aug 2023 • Phase 3- Phase 925Pagudpud, Ilocos NorteAug 2023 Aug 2023- Phase 425<				-
Sapang Balen Solar 2 PP- Phase 192.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2024 Concepcion, Tarlac- Phase 292.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 692.799Nagudpud, Ilocos NorteMar 2024 May 2023 Phase 2- Phase 180Pagudpud, Ilocos NorteMay 2023 Angudpud, Ilocos Norte- Phase 230Pagudpud, Ilocos NorteJul 2023 Lanao Phase 2- Phase 325Pagudpud, Ilocos NorteJul 2023 Lanao Phase 2- Phase 425<				
Concepcion, Tarlac- Phase 292.799Mabalacat City and Magalang, Pampanga and Concepcion, Tarlac- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, Tarlac- Phase 692.79992.799- Phase 70Calatagan, Lian, Batangas- Phase 825Pagudpud, Ilocos Norte- Phase 930Calatagan, Lian, Batangas- Phase 925Pagudpud, Ilocos Norte- Phase 425Pagudpud, Ilocos Norte- Phase 520Brgy. Lamao, Lima				
- Phase 292.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2024 Concepcion, Tarlac- Phase 392.799Mabalacat City and Magalang, Pampanga and Ocncepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacJun 2025 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 692.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, Tarlac- Phase 730Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023 Phase 2- Phase 230Pagudpud, Ilocos NorteJun 2024 Phase 4- Phase 425Pagudpud, Ilocos NorteJul 2023- Phase 425Pagudpud, Ilocos NorteJul 2023- Phase 520Brgy. Lamao, Limay, BataanJul 2023- Chamao BESS30Brgy. Lamao, Limay, Bat	Sapally Datell Solar 2 FF- Fliase I	92.199		DEC 2024
- Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, Tarlac- Phase 492.799Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, TarlacJun 2025 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, TarlacDec 2026 Concepcion, TarlacSub-Total Solar2,432.883WINDToCaparispisan II WPP70Pagudpud, Ilocos NorteMar 2024 Calatagan, Lian, BatangasCalatagan WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023 Augu 2023 Phase 2- Phase 325Pagudpud, Ilocos NorteAug 2023 Augu 2023- Phase 425Pagudpud, Ilocos NorteAug 2023 Augu 2023- Phase 325Pagudpud, Ilocos NorteAug 2023 Augu 2023- Phase 425Pagudpud, Ilocos NorteDec 2025 Sub-Total WindEATTERYLamao BESS20Brgy. Lamao, Limay, BataanJul 2023 Jul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023 Jul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023 Jul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023 Jul 2023San Manuel BESS*20Gamu, IsabelaJul 2023	Dhace 2	02 700		Dec 2024
Phase 392.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2025 Concepcion, TarlacPhase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacJun 2025 Concepcion, TarlacPhase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026Sub-Total Solar2,432.883Dec 2026WIND70Pagudpud, Ilocos NorteMar 2024Calatagan WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023 Angudpud, Ilocos NorteMay 2023 Angudpud, Ilocos NorteMay 2023 Angu2024Phase 425Pagudpud, Ilocos NorteJun 2024Phase 425Pagudpud, Ilocos NorteJul 2023Phase 425Pagudpud, Ilocos NorteJul 2023Phase 425Pagudpud, Ilocos NorteJul 2023BATERY20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS20Brgy. Lamao, Limay, BataanJul 2023San Manuel BESS *20San Manuel, PangasinanJul 2023San Manuel BESS *30San Manuel, PangasinanJul 2023San Manuel BESS *20San Manuel, PangasinanJul 2023San Manuel BESS *20Gamu, IsabelaJul 2023	- Flidse Z	92.799		Del 2024
- Phase 4 92.799 Mabalacat City and Magalang, Pampanga and Jun 2025 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac - - Phase 4 92.5 Pagudpud, Ilocos Norte - May 2023 - Phase 4 25 Pagudpud, Ilocos Norte - Jan 2024 - Phase 4 25 Pagudpud, Ilocos Norte - Dec 2025 Sub-Total Wind 260 - 	Dhase 2	0.0 700		Dec 2025
- Phase 492.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacJun 2025 Concepcion, Tarlac- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, TarlacSub-Total Solar2,432.883VINDCalatagan, Lian, BatangasDec 2025Calatagan WPP30Calatagan, Lian, BatangasDec 2023Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023 Pagudpud, Ilocos NorteMay 2023 Aug 2023 Pagudpud, Ilocos NorteMay 2023 Aug 2023 Pagudpud, Ilocos NorteMay 2023 Aug 2023 Aug 2023 Pagudpud, Ilocos NorteMay 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2023 Aug 2024 Aug 2023 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2023 Aug 2024 Aug 2023 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2023 Aug 2024 Aug 2024 	- Phase 3	92.799		Dec 2025
- Phase 5 92.799 Mabalacat City and Magalang, Pampanga and Dec 2026 Concepcion, Tarlac Dec 2026 Concepcion, Tarlac Dec 2026 Concepcion, Tarlac Dec 2026 Concepcion, Tarlac Dec 2025 Sub-Total Solar 2,432.883 Dec 2025 Balaoi and Caunayan WPP Project - Phase 1 80 Pagudpud, Ilocos Norte May 2023 - Phase 2 30 Pagudpud, Ilocos Norte May 2023 - Phase 2 30 Pagudpud, Ilocos Norte May 2023 - Phase 3 25 Pagudpud, Ilocos Norte Jan 2024 - Phase 4 25 Pagudpud, Ilocos Norte Dec 2025 Sub-Total Wind 260 Dec 2025 Sub-To	Disco 4	00 500		1
- Phase 592.799Mabalacat City and Magalang, Pampanga and Concepcion, TarlacDec 2026 Concepcion, TarlacWND70Pagudpud, Ilocos NorteMar 2024Caparispisan II WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteAug 2023- Phase 325Pagudpud, Ilocos NorteJan 2024- Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260200200Sant TERYLamao Phase 2 BESS30Brgy, Lamao, Limay, BataanJul 2023BCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*20Gamu, IsabelaJul 2023San Wanuel BESS*20Gamu, IsabelaJul 2023	- Phase 4	92.799		Jun 2025
Sub-Total Solar2,432.883VIND70Pagudpud, Ilocos NorteMar 2024Caparispisan II WPP70Pagudpud, Ilocos NorteMar 2024Calatagan WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteAug 2023- Phase 325Pagudpud, Ilocos NorteJan 2024- Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260Dec 2025Sub-Total Wind200BATTERYLamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023San Manuel BESS**20Gamu, IsabelaJul 2023		00 700		D 0000
Sub-Total Solar2,432.883VINDCaparispisan II WPP70Pagudpud, Ilocos NorteMar 2024Calatagan WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteAug 2023- Phase 325Pagudpud, Ilocos NorteJan 2024• Phase 325Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260Dec 2025Dec 2025Sub-Total Wind260CPU Sup-Total Wind20Brgy. Lamao, Limay, BataanJul 2023Lamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Samu BESS*20Gamu, IsabelaJul 2023	- Phase 5	92.799		Dec 2026
Caparispisan II WPP70Pagudpud, Ilocos NorteMar 2024Calatagan WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteAug 2023- Phase 325Pagudpud, Ilocos NorteJan 2024- Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260Dec 2025Dec 2025Sub-Total Wind260Dec 2025Dec 2023BATTERYJul 2023Jul 2023Jul 2023Lamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023San Manuel BESS*20Gamu, IsabelaJul 2023San Wanuel BESS*20Gamu, IsabelaJul 2023	Sub-Total Solar	2,432.883	Concepcion, Tarlac	
Calatagan WPP30Calatagan, Lian, BatangasDec 2025Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteAug 2023• Phase 325Pagudpud, Ilocos NorteJan 2024• Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260Dec 2025Dec 2025Sub-Total Wind20BATTERYLamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Sanu BESS*20Gamu, IsabelaJul 2023	WIND			
Balaoi and Caunayan WPP Project - Phase 180Pagudpud, Ilocos NorteMay 2023- Phase 230Pagudpud, Ilocos NorteAug 2023• Phase 325Pagudpud, Ilocos NorteJan 2024• Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260ExampleExampleBATTERYLamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023	Caparispisan II WPP	70	Pagudpud, Ilocos Norte	Mar 2024
 Phase 2 Phase 3 Pagudpud, Ilocos Norte Phase 3 Pagudpud, Ilocos Norte Jan 2024 Phase 4 Pagudpud, Ilocos Norte Dec 2025 Sub-Total Wind 260 BATTERY BATTERY Lamao BESS Lamao, Limay, Bataan Jul 2023 Lamao Phase 2 BESS BCCP Limay BESS Project San Manuel BESS* 20 San Manuel BESS Phase 2* 30 San Manuel BESS 20 Gamu, Isabela Jul 2023 Jul 2024 Jul 2023 Jul 2023 Jul 2024 Jul 2024 Jul 2025 Jul 2025 Jul 2025 Jul 2025 Jul 2025	Calatagan WPP	30	Calatagan, Lian, Batangas	Dec 2025
 Phase 2 Phase 3 Pagudpud, Ilocos Norte Phase 3 Pagudpud, Ilocos Norte Jan 2024 Phase 4 Pagudpud, Ilocos Norte Dec 2025 Sub-Total Wind 260 BATTERY BATTERY Lamao BESS Lamao, Limay, Bataan Jul 2023 Lamao Phase 2 BESS BCCP Limay BESS Project San Manuel BESS* 20 San Manuel BESS Phase 2* 30 San Manuel BESS 20 Gamu, Isabela Jul 2023 Jul 2024 Jul 2023 Jul 2023 Jul 2024 Jul 2024 Jul 2025 Jul 2025 Jul 2025 Jul 2025 Jul 2025	Balaoi and Caunayan WPP Project - Phase 1	80		May 2023
• Phase 325Pagudpud, Ilocos NorteJan 2024• Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260260BATTERYLamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				-
• Phase 425Pagudpud, Ilocos NorteDec 2025Sub-Total Wind260BATTERYImage: Second s				
Sub-Total Wind260BATTERY20Brgy. Lamao, Limay, BataanJul 2023Lamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				
BATTERYLamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				
Lamao BESS20Brgy. Lamao, Limay, BataanJul 2023Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				
Lamao Phase 2 BESS30Brgy. Lamao, Limay, BataanJul 2023BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023		20	Broy, Lamao, Limay, Bataan	Jul 2023
BCCP Limay BESS Project40BCCPP, Limay, BataanJul 2023San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				
San Manuel BESS*20San Manuel, PangasinanJul 2023San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				
San Manuel BESS Phase 2*30San Manuel, PangasinanJul 2023Gamu BESS*20Gamu, IsabelaJul 2023				
Gamu BESS*20Gamu, IsabelaJul 2023				
Jailiu DEJJ Filabe 2 20 Udiliu, 15d0eld Jul 2023				
	Uailiu DEJJ Fliast L	20	Jamu, ISabela	JUL 2023

X

X

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
Magapit BESS*	20	Magapit, Cagayan	Jul 2023
Magapit BESS Phase 2*	20	Magapit, Cagayan	Jul 2023
Concepcion BESS*	20	Concepcion, Tarlac	Jul 2023
Concepcion BESS Phase 2*	30	Concepcion, Tarlac	Jul 2023
Lumban BESS*	40	Lumban, Laguna	Jul 2023
Lumban BESS Phase 2*	20	Lumban, Laguna	Jul 2023
Mexico BESS*	50	Mexico, Pampanga	Aug 2023
Mexico BESS Phase 2*	20	Mexico, Pampanga	Aug 2023
Mahabang Parang BESS	40	Mahabang Parang, Batangas	Dec 2023
Daraga BESS Project	40	Daraga, Albay	Jan 2024
Bauang BESS*	40	Bauang, La Union	Sep 2023
Labrador BESS Project	40	Labrador, Pangasinan	Sep 2023
San Rafael BESS*	20	San Rafael, Bulacan	Sep 2023
Cabanatuan BESS	40	Cabanatuan, Nueva Ecija	Sep 2023
Hermosa BESS Project	40	Hermosa, Bataan	Sep 2023
Laoag BESS Project*	40	Laoag, Ilocos Norte	Sep 2023
Navotas BESS Project*	40	Navotas, Metro Manila	Sep 2023
Mexico SJM BESS	20	Barangay San Jose Matulid, Mexico, Pampanga	Sep 2023
Magat BESS	24	Ramon, Isabela	Mar 2024
Pagbilao BESS	40	Pagbilao, Quezon	Sep 2024
Bacnotan BESS Project	40	Brgy. Cabugao, Bacnotan, La Union	Sep 2024
Subic BESS Project	40	Sitio Agusuhin, Cawag, Subic, Zambales	Sep 2024
San Jose del Monte BESS Project	40	Brgy. San Jose del Monte City, Bulacan	Sep 2024
Bolo BESS Project	40	Brgy. Bolo, Labrador, Pangasinan	Sep 2024
Tuguegarao BESS Project	40	Brgy. Libag Norte, Tuguegarao City, Cagayan	Sep 2024
Bayombong BESS Project	40	Brgy. Busilac, Bayombong, Nueva Vizcaya	Sep 2024
Calamba BESS Project	40	Brgy. Prinza, Calamba, Laguna	Sep 2024
Labo BESS Project	40	Brgy. Mahawan-hawan, Labo, Camarines Norte	Jul 2024
Naga BESS Project	40	Brgy. Del Rosario, Naga, Camarines Sur	Jul 2024
San Rafael BESS Phase 2	20	San Rafael, Bulacan	Mar 2025
Sual BESS	60	Sual, Pangasinan	Mar 2025
Urdaneta BESS	40	Urdaneta, Pangasinan	Mar 2025
Dasmarinas BESS	40	Dasmarinas, Cavite	Mar 2025
Ilijan BESS Project	40	Ilijan, Batangas	Mar 2025
Gumaca BESS Project	40	Brgy. Progreso, Gumaca, Quezon	Mar 2025
La Trinidad BESS Project	40	Beckel, La Trinidad, Benguet	Mar 2025
BCCP Limay BESS Project Phase 2	20	BCCPP, Limay, Bataan	Mar 2025
Angat BESS Project*	20	Angat, Bulacan	Mar 2025
Sub-Total BESS	1,504		
TOTAL COMMITTED	11,209.793		
TOTAL COMMITTED W/O BESS	9,705.793		

* with SIS

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
	INDICATIVE	POWER PLANTS	
COAL			
H & WB PCB Supercritical CFPP - Unit 1*	350	Jose Panganiban, Camarines Norte	TBD
SRPGC CFPP Project*	350	Brgy. San Rafael, Calaca, Batangas	TBD
SRPGC CFPP Project*	350	Brgy. San Rafael, Calaca, Batangas	TBD
H & WB PCB Supercritical CFPP - Unit 2*	350	Jose Panganiban, Camarines Norte	TBD
Sub-Total Coal	1,400		
OIL-BASED			
Kiwalo Ancillary Reserve DPP*	100	Brgy. Kiwalo, Daraga, Albay	Aug 2023
Namantao Ancillary Reserve DPP*	50	Brgy. Namantao , Daraga, Albay	Aug 2023
Malaya 2 x 30 DPP	60	Malaya, Pililla, Rizal	Dec 2023

Proposed Constation Excility /			Commissioning
Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
Sub-Total Oil-Based	210	Location	rear
NATURAL GAS			
Mariveles Gas to Power Project (Mariveles LNG)*	1,200	Brgy. Biaan, Mariveles, Bataan	Jun 2027
GNPower Sisiman LNG CCPP	1,200	Barangays Alas-asin and Sisiman, Mariveles, Bataan	Dec 2028
LNG-Fired CCPP	1100	Barangays Nalvo Sur and Carisquis, Luna, La Union	2023
Combined Cycle Gas-fired Turbine San Francisco	1,200	Barangays Cagsiay 1 and Cagsiay 2, Mauban,	2026
Power Plant		Quezon Province	
VIRES Natural Gas Floating Power Plant	450	Barangay Simlong, Batangas City, Batangas	Mar 2026
Quezon CCPP	1,200	Barangay Laurel, Tagkawayan, Quezon	Dec 2026
Pagbilao 4 & 5 CCGT Power Plant	1,310	Barangay Ibabang Polo, Pagbilao Quezon	Nov 2028
Sub-Total Natural Gas	8,920		
Maibarara3 GPP	20	Laguna/Batangas	2025
Bacman 4 Botong - Rangas GPP	20	Bacon District, Sorsogon, Sorsogon City	2026
Kayabon GPP	30	Manito, Albay	2026
Kalinga GPP - Phase 1*	40	Lubuagan, Pasil and Tinglayan, Kalinga	2027
Kalinga GPP - Phase 2*	40	Lubuagan, Pasil and Tinglayan, Kalinga	2029
Kalinga GPP - Phase 3*	40	Lubuagan, Pasil and Tinglayan, Kalinga	2031
Sub-Total Geothermal	190	-	
HYDRO	0.00	Con Manual Dance in a	0005
ARIIS 1 (NIA Station 4+283) HEPP	0.90	San Manuel, Pangasinan	2025
ARIIS 2 (NIA Stn 5+437.50) HEPP	0.75 0.50	San Manuel, Pangasinan	2025 2025
ARIIS 3 (NIA Stn 5+898.50) HEPP ARIIS 4 (Stn 4+808) HEPP	0.50	San Manuel, Pangasinan San Manuel, Pangasinan	2025
Bacolan HEPP	3	San Manuet, Fangasinan San Clemente, Tarlac & Mangatarem, Pangasinan	2025
Boga HEPP	1	Bauko, Mt. Province	2025
Coto 2 HEPP*	3.5	Masinloc, Zambales	2025
Camiling River 3 HEPP	4.2	Mayantoc, Tarlac	2025
Ilaguen HEPP*	19	San Mariano & San Guillermo, Isabela	2025
Matuno 1 HEPP*	7.4	Ambaguio, Nueva Vizcaya	2025
Lower Chico HEPP	2.1	Bauko, Mt. Province	2025
Upper Chico HEPP	2	Bauko, Mt. Province	2025
Lower Siffu HEPP	3	Natonin, Mt. Province	2025
Upper Siffu HEPP	2.75	Natonin, Mt. Province	2025
Piapi River HEPP	4.5	Real, Quezon	2025
Pampang HEPP*	26	Sta. Fe Nueva Vizcaya	2025
Tublay 3 HEPP	1	Tublay, Benguet	2025
Tumauini (Upper Cascade) HEPP	11.3	Tumauini, Isabela	2025
Camiling 1 HEPP	7	Mayantoc, Tarlac	2026
Coto 1 HEPP*	9	Masinloc, Zambales	2026
Ibulao 2 HEPP*	7.4	Kiangan, Ifugao	2026
Kabayan 2 HEPP*	52	Kabayan, Benguet	2026
Matuno 2 HEPP*	15	Ambaguio, Nueva Vizcaya	2026
Matuno 2 HEPP* Tinoc 1 HEPP	7.9 3	Bambang, Nueva Vizcaya Tinoc, Ifugao	2026 2026
Tinoc 1 HEPP Tinoc 2 HEPP	5 6.5	Tinoc, Ifugao Tinoc, Ifugao	2026
Tinoc 3 HEPP	5	Tinoc, Ifugao Tinoc, Ifugao	2026
Tublay 2 HEPP	1	Tublay, Benguet	2020
Olilicon HEPP*	20	Ilagan, Ifugao	2026
Tinglayan HEPP	22.5	Tinglayan, Kalinga	2026
Ilaguen 2 HEPP*	14	Echague, Isabela	2026
Alimit HEPP*	120	Lagawe, Ifugao	2026
Nabuangan River HEP	10	Conner, Apayao	2026
Tamdangan HEPP	7.4	Vintar, Ilocos Norte	2026
Tamdangan 2 HEPP	5.15	Vintar, Ilocos Norte	2026
Kennon HEPP	5	Tuba, Benguet	2026
Camiling 2 HEPP	4	Mayantoc, Tarlac	2027

X

X

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
Chico River HEPP*	52	Tabuk, Kalinga	2027
Chico HEPP	150	Tabuk, Kalinga	2027
Lamut HEPP*	6.8	Asipulo, Ifugao	2027
Pakil Pumped Storage HEPP	1,400	Itogon, Benguet	2027
Pasil B HEPP	15.684	Pasil, Kalinga	2027
Pasil C HEPP	9.754	Pasil, Kalinga	2027
		Peñablanca, Cagayan	
Pinacanauan River HEPP	6		2027
Wawa Pumped Storage 1 HEPP*	500	Rodriguez, Rizal	2027
Wawa Pumped Storage 2 HEPP	100	Rodriguez, Rizal	2027
Wawa Pumped Storage 3 HEPP	50	Rodriguez, Rizal	2027
Aya Pumped Storage HEPP	120	Pantabangan, Nueva Ecija	2028
Alimit-Pumped Storage HEPP	250	Lagawe & Mayoyao, Ifugao	2028
Calanan HEPP*	60	Tabuk City, Kalinga	2028
Dalimuno HEPP*	58	Tabuk City, Kalinga	2028
Gened - 2 HEPP*	50	Kabugao, Apayao	2028
Kibungan 2 HEPP	40	Kibungan, Benguet	2028
Masiway 2 HEPP	9	Pantabangan, Nueva Ecija	2028
Saltan D HEPP	49	Balbalan and Pinukpuk, Kalinga	2028
Saltan River Site E HEPP	45	Balbalan and Pinukpuk, Kalinga	2028
Santol-Sugpon HEPP	52	Sugpon, Ilocos Sur	2028
Tignoan (Lower) HEPP*	8	Real, Quezon	2028
Tublay 1 HEPP	1.9	Tublay, Benguet	2028
Pantabangan (Pump Storage) HEPP*	600	Pantabangan, Nueva Ecija	2029
Calanasan 1 HEPP	30	Calanasan, Apayao	2030
San Roque Upper East Pump Storage HEPP	600	Itogon, Benguet	2030
San Roque West Pump Storage HEPP	400	Itogon, Benguet	2030
Dingalan Pumped Storage HEPP	500	Dingalan, Aurora	2032
San Roque Lower East Pump Storage HEPP	400	Itogon, Benguet	2032
Kibungan Pumped Storage HEPP	500	Kibunaan Benauet	2037
Kibungan Pumped Storage HEPP	500 6 683 558	Kibungan, Benguet	2037
Sub-Total Hydro	500 6,683.558	Kibungan, Benguet	2037
Sub-Total Hydro BIOMASS	6,683.558		
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project	6,683.558 12	Pampanga	Jun 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project	6,683.558 12 5.082		
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass	6,683.558 12	Pampanga	Jun 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR	6,683.558 12 5.082 17.082	Pampanga Pampanga	Jun 2024 Jan 2025
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project*	6,683.558 12 5.082 17.082 51.555	Pampanga Pampanga Calabanga, Camarines Sur	Jun 2024 Jan 2025 May 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project	6,683.558 12 5.082 17.082 51.555 20.622	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan	Jun 2024 Jan 2025 May 2023 Dec 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel,	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project*	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project* Armenia SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project* Armenia SPP Project Bagac SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project* Armenia SPP Project Bagac SPP Project Bugallon SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Apr 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santa SPP Project* Armenia SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project*	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Apr 2024 Dec 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project* Cordon SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Apr 2024 Dec 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project* Cordon SPP Project Giga Ace 8 SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jun 2024 Jan 2024 Dec 2024 Dec 2024 Jan 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project* Cordon SPP Project Giga Ace 8 SPP Project Gamu SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Dec 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jun 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project* Cordon SPP Project Giga Ace 8 SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jun 2024 Jan 2024 Dec 2024 Dec 2024 Jan 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project* Cordon SPP Project Giga Ace 8 SPP Project Gamu SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Dec 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jun 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project Santo Domingo SPP Project Santo Domingo SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project Giga Ace 8 SPP Project Gamu SPP Project Hermosa SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244 22.398	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela Hermosa, Bataan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project Giga Ace 8 SPP Project Gamu SPP Project Hermosa SPP Project Infanta 1 SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244 22.398 140.917	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela Hermosa, Bataan Infanta, Pangasinan	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Sep 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Jan 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project RASLAG IV SPP Project Santo Domingo SPP Project Santo Domingo SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project Giga Ace 8 SPP Project Giga Ace 8 SPP Project Infanta 1 SPP Project Laguna Bay 2 SPP Project*	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244 22.398 140.917 150	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela Hermosa, Bataan Infanta, Pangasinan Pililla and Laguna de Bay, Rizal San Marcelino, Zambales	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Jan 2024 Dec 2024 Jun 2024 Oct 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bagac SPP Project Clark SPP Project Giga Ace 8 SPP Project Giga Ace 8 SPP Project Infanta 1 SPP Project Laguna Bay 2 SPP Project* Mapannuepe Lake Floating SPP Project PAVI Green San Vicente SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244 22.398 140.917 150 250.894	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela Hermosa, Bataan Infanta, Pangasinan Pililla and Laguna de Bay, Rizal San Marcelino, Zambales Brgy. Cabanbanan, San Vicente, Camarines Norte	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Jan 2024 Dec 2024 Jun 2024 Oct 2024 Mar 2024 Jan 2024 Jan 2024
Sub-Total Hydro BIOMASS 12-MW Waste-to-Energy Power Plant Project 5.082-MW Biomass Power Plant Project Sub-Total Biomass SOLAR 74.131 MWp / 51.555 MW Calabanga SPP Project* Bugallon SPP Project Lucanin SPP Project RASLAG IV SPP Project PAVI Green Orion SPP Project Santo Domingo SPP Project Santa SPP Project Bagac SPP Project Bugallon SPP Project Clark SPP Project Giga Ace 8 SPP Project Infanta 1 SPP Project Laguna Bay 2 SPP Project* Mapannuepe Lake Floating SPP Project	6,683.558 12 5.082 17.082 51.555 20.622 178.72 24.2 16.2 44.2 16 35.2 121.5 530.4 35 50 79.051 41.244 22.398 140.917 150 250.894 28.6	Pampanga Pampanga Calabanga, Camarines Sur Bugallon, Pangasinan Brgy. Lucanin, Mariveles, Bataan Talimundoc, Magalang, Pampanga Sitio Damulog, Brgy. Daan Pare, Orion, Bataan Brgys. Santo Domingo and Lapalo, San Manuel, Pangasinan Santa, Ilocos Sur Tarlac City and San Jose, Tarlac Quinawan, Bagac, Bataan Bugallon, Pangasinan Clark International Airport, Mabalacat, Pampanga Cordon, Isabela Palauig, Zambales Gamu, Isabela Hermosa, Bataan Infanta, Pangasinan Pililla and Laguna de Bay, Rizal San Marcelino, Zambales	Jun 2024 Jan 2025 May 2023 Dec 2023 Oct 2023 Dec 2023 Jun 2023 Oct 2023 Jun 2023 Oct 2023 Jul 2024 Jan 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Dec 2024 Jun 2024 Oct 2024 Mar 2024

X

X

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
San Pablo SPP Project	104	San Pablo, Isabela	Jun 2024
San Manuel 1 SPP Project	56	San Manuel, Pangasinan	Dec 2024
San Manuel SPP Plant	67.07	San Manuel, Pangasinan	Oct 2024
SolarAce3 SPP Project	200	Buguey, Cagayan	Jun 2024
San Ildefonso SPP Project*	44	San Ildefonso, Bulacan	Dec 2024
Palauig SPP Project*	49.5	Iba-Palauig, Zambales	Feb 2024
98.136 MWp/81.780MW Laoag SPP Project*	57.8	Laoag,Aguilar, Pangasinan	Jun 2025
Cabangan Solar Project	43.75	Brgy. Mabanglit, Cabangan, Zambales	Sep 2025
Isabela Ground Mounted Solar PV Project	336.826	City of Ilagan, Isabela	Dec 2025
Olongapo SPP Project	171.85	Olongapo, Zambales	Mar 2025
Samal SPP Project	48.118	Gugo and San Juan, Samal, Bataan	Dec 2025
San Marcelino SPP Project	120.295	San Marcelino, Zambales	Oct 2025
Trust SPP Project	20.622	Mabalacat, Pampanga	Dec 2025
Bongabon SPP Project	18.375	Bongabon, Nueva Ecija	Jun 2026
Bongabon SPP Project	30.933	Bongabon, Nueva Ecija	Oct 2026
Maragondon 1 SPP Project	44.681	Maragondon and General Emilio Aguinaldo, Cavite	Dec 2026
Magat Floating SPP Project	54.08	Magat Reservoir, Alfonso Lista and Aguinaldo in Ifugao; and Santiago City and Ramon in Isabela	May 2026
TITAN I SPP Project	240	Cambitala and San Juan, Pantabangan, Nueva Ecija	Dec 2026
Bagac 1 SPP Project	121.5	Brgy. Quinawan, Bagac, Bataan	Jun 2027
Laoag 2 SPP Project*	71.4	Laoag,Aguilar, Pangasinan	May 2027
Lal-lo SPP Project	95	Brgy. Maxingal, Lal-lo, Cagayan	Jan 2028
Subic New PV SPP Project	86.199	Morong and Hermosa, Bataan	Feb 2028
Currimao SPP	0.8	Currimao, Ilocos Norte	2026

1

Luntal-Bayudbod SPP	Sub-Total Solar	50 4,019.70	Tuy, Batangas	2027
WIND				
Ilocos Norte Wind Power Project		144	Burgos and Pasuquin, Ilocos Norte	Dec 2029
Camarines Sur WPP		71.4	Mt. Bernacci, Libmanan, Camarines Sur	Oct 2024
Kalayaan 4 North WPP*		125	Provinces of Laguna and Quezon	Jun 2024
Kalayaan 4 South WPP*		125	Provinces of Laguna and Quezon	Jun 2024
Talim WPP		198	Rizal	Jun 2024
Koala WPP		150	Laguna Lake and Provinces of Laguna and Rizal	Feb 2025
Panda WPP		150	Pililla and Jalajala, of Rizal and Mabitac, Pangil and	Mar 2025
			Pakil of Laguna	
Tanay WPP		96	Antipolo and Tanay, Rizal	Dec 2025
Tayabas North Wind Energy Project		80	Tayabas City and Lucban, Quezon	Sep 2025
Burgos 1 WPP		60	Burgos, Ilocos Norte	Dec 2026
Caraga WPP Phase 1		36	Surigao City, San Francisco, Malimono, Sison, Placer and Mainit, Surigao del Norte	Dec 2026
Tayabas South Wind Energy Project		150	Tayabas City and Pagbilao, Quezon	Mar 2025
Quezon II Plaridel WPP		50	Plaridel and Atimonan, Quezon	Dec 2026
Quezon WPP		600	Quezon, Laguna and Rizal	Jun 2026
Aguilar WPP		99	Bugallon and Aguilar Pangasinan	Dec 2027
Dalupiri Island WPP		500	Dalupiri Island, Calayan, Cagayan	Dec 2027
Kalayaan 2 WPP*		100	Pakil, Paete and Kalayaan, Laguna and Mauban, Quezon	Dec 2027
Lubang and Looc Island WPP		600	Offshore and Onshore of Occidental Mindoro	Apr 2027
Presentacion 2 WPP		54	Presentacion, Camarines Sur	Dec 2027
Rizal WPP		603	Antipolo and Tanay, Rizal	Dec 2027
Tayabas Bay WPP		275	Offshore of Quezon	Apr 2027
Aparri Bay WPP		600	Offshore of Aparri, Cagayan	Dec 2029
Burgos 4 WPP		100	Burgos, Ilocos Norte	Dec 2029PP
Calatagan Offshore WPP		1,024	Offshore and onshore of Batangas	Dec 2029

X

X

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
Ilocos Norte WPP	144	Burgos and Pasuquin, Ilocos Norte	Dec 2029
Isla WPP	335	Municipalities of Paete, Pakil and	Dec 2029
	555	Kalayaan, Province of Laguna; and in the	Dec Lolo
		Municipality of Mauban, Province of Quezon	
Frontera Bay (Offshore) WPP	450	Offshore of Cavite Province	Dec 2029
Manila Bay Offshore WPP	1,248	Offshore of Bataan, Cavite and Batangas	Dec 2029
Pasuquin WPP	90	Pasuquin, Ilocos Norte	Dec 2029
Presentacion WPP	42	Presentacion and Garchitorena	Dec 2029
Real Ace WPP	175	Province of Quezon	Dec 2029
San Miguel Bay (Offshore) WPP	600	Offshore of Camarines Norte/Sur Provinces	Dec 2029
Bulalacao Offshore WPP	3,100	Offshore and onshore of Oriental Mindoro; and	Aug 2030
	3,100	Offshore of Antique	Aug 2050
Calatagan Offshore Wind Farm	1400	Offshore of Batangas and Occidental Mindoro	Apr 2030
Claveria Offshore Wind Farm	1,600	Offshore of Cagayan and Ilocos Norte	Apr 2030
Mariveles Offshore Wind Farm	1,500	Offshore of Bataan, Batangas and Cavite and	Jun 2030
Northern Luzon Offshore WPP	2,000	Offshore of Ilocos Norte	Dec 2030
San Nicolas WPP	100	San Nicolas, Pangasinan	Feb 2030
Lucena WPP	475	Offshore and Onshore of Province of Quezon	2031
San Miguel Bay WPP	500	Offshore of Camarines Sur	2031
Bulalacao Bay Offshore WPP	1,200	Offshore and Onshore of Oriental Mindoro and	2031
5	,	Antique	
San Enrique Bank Offshore WPP	420	Offshore of Guimaras and Negros Occidental	2031
Sub-Total Wind	21,225.400	-	
BATTERY	10		D 0002
Cruz na Daan (CND) BESS*	40	Balagtas Bypass Road, Mabalasbalas, San Rafael	Dec 2023
	40	Bulacan	D 0004
Ambuklao BESS	40	Brgy. Ambuklao, Bokod, Benguet	Dec 2024
Bay BESS Project*	20	Calauan, Laguna	Mar 2024
Bay BESS Project	50	Bay, Laguna	Sep 2024
Bugallon Energy Storage Project	200	Bugallon , Pangasinan	Mar 2024
Bac-Man Energy Storage System	30	Manito, Albay	Dec 2024
Enerhiya Central BESS	40	Concepcion, Tarlac	Dec 2024
Enerhiya Sur II Battery Energy StoBESSrage Project	40	Lumban, Laguna	Dec 2024
Panda Energy Storage Project	150	Pililla, Rizal	Mar 2024
Pililla BESS Project	50	Pililia, Rizal	Mar 2024
Enerhiya Sur I BESS Project	40	Lemery and Tuy, Calaca, Batangas	Dec 2025
Labo BESS Project	20	Labo, Camarines Norte	Mar 2025
Laoag BESS*	20	Laoag, Ilocos Norte	2025
Lumban BESS*	20	Lumban, Laguna	2025
Nagsaag BESS	20	Nagsaag, Pangasinan	2025
Concepcion BESS*	20	Concepcion, Tarlac	2026
Labrador BESS	20	Labrador, Pangasinan	2026
	40	Itogon, Benguet	Mar 2026
Currimao BESS Project	50	Currimao, Ilocos Norte	Dec 2027
Binga BESS Currimao BESS Project Lumban BESS	50 20	Currimao, Ilocos Norte Lumban, Laguna	Dec 2027 TBD
Currimao BESS Project Lumban BESS Sub-Total Battery	50 20 930		
Currimao BESS Project Lumban BESS	50 20		

* with SIS

Proposed Generation Name of the Pr	-	Capacity (MW) COMMITT	Location ED POWER PLANTS	Commissioning Year
COAL Palm Concepcion CFPP Unit II*		135	Brgy. Nipa, Concepcion, Iloilo	Mar 2025
	Sub-Total Coal	135	Bigy. Nipa, concepción, itolio	Mai 2025
OIL-BASED	Sub Total Coal	100		
11.174 MW Calbayog Bunker C-F	ired DPP*	11.174	Purok 1, Sitio Looc, Brgy. Carayman, Calbayog	Feb 2023
			City, Western Samar	
Sulzer DPP		5.5	M.L. Quezon National Highway, Barangay Pajo,	Sep 2023
			Lapu-lapu City, Cebu	
Caterpillar DPP		2	M.L. Quezon National Highway, Barangay Pajo,	Sep 2023
			Lapu-lapu City, Cebu	
Cummins DPP		1	M.L. Quezon National Highway, Barangay Pajo,	Sep 2023
			Lapu-lapu City, Cebu	
	Sub-Total Oil-Based	19.674		
GEOTHERMAL				
Northern Negros Geothermal Pr	oject	5	Bago and Murcia, province of Negros Occidental	Feb 2024
Biliran GPP - Unit 1		2	Biliran, Biliran	Mar 2023
- Unit 2		6	Biliran, Biliran	Nov 2024
- Unit 3		10	Biliran, Biliran	2025
- Unit 4		10	Biliran, Biliran	2026
- Unit 5		22	Biliran, Biliran	2027
	Sub-Total Geothermal	55		
HYDRO				
Timbaban HEPP*		18	Madalag, Aklan	Jun 2023
gbulo (Bais) HEPP*		8.1	Igbaras, Iloilo	Apr 2023
	Sub-Total Hydro	26.1		
BIOMASS				
CASA Biomass Cogeneration Pla	nt (Expansion Project)	8	Passi City. Iloilo	Jun 2023
HDJ BPP Project		6	Bayawan City, Negros Oriental	Apr 2023
	Sub-Total Biomass	14		
SOLAR				
Kananga-Ormoc Solar Power Pro	-	300	Kananga and Ormoc City, Leyte	Dec 2025
	Sub-Total Solar	300		
WIND		40.0		
Nabas-2 Wind Power Project		13.2	Nabas, Malay, Aklan	May 2025
	Sub-Total Wind	13.2		
		00	Tabah Cita Cala	1.1.0000
Toledo BESS Project		20	Toledo City, Cebu	Jul 2023
Toledo BESS Project Jbay BESS Project		20	Ubay, Bohol	Jul 2023
oledo BESS Project Jbay BESS Project Ormoc BESS Project		20 20	Ubay, Bohol Ormoc, Leyte	Jul 2023 Jul 2023
oledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2		20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte	Jul 2023 Jul 2023 Jul 2023
Toledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project		20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Jul 2023
oledo BESS Project Jbay BESS Project Ormoc BESS Project Ormoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project		20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023
oledo BESS Project Jbay BESS Project Ormoc BESS Project Ormoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project		20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023
oledo BESS Project Jbay BESS Project Ormoc BESS Project Ormoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project		20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023
oledo BESS Project Jbay BESS Project Ormoc BESS Project Ormoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Tamboan BESS Project Compostela BESS Project Jabas BESS Project		20 20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2023
oledo BESS Project Jbay BESS Project Ormoc BESS Project Ormoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project Jabas BESS Project Calbayog BESS Project		20 20 20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024
Toledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project Vabas BESS Project Calbayog BESS Project Tabango BESS Project Phase 2		20 20 20 20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar Tabango, Leyte	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2023
Toledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project Vabas BESS Project Calbayog BESS Project Tabango BESS Project Phase 2		20 20 20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar	Jul 2023 Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024
Toledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project Nabas BESS Project Calbayog BESS Project Tabango BESS Project Phase 2 Toledo BESS Project Phase 2		20 20 20 20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar Tabango, Leyte	Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024 May 2025
Toledo BESS Project Jbay BESS Project Ormoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project Nabas BESS Project Calbayog BESS Project Tabango BESS Project Phase 2 Toledo BESS Project Phase 2 San Carlos BESS Project		20 20 20 20 20 20 20 20 20 20 20 20	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar Tabango, Leyte Toledo City, Cebu	Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024 May 2025 May 2025
BATTERY Toledo BESS Project Jbay BESS Project Ormoc BESS Project Phase 2 Tabango BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Samboan BESS Project Compostela BESS Project Nabas BESS Project Tabango BESS Project Phase 2 Toledo BESS Project Phase 2 San Carlos BESS Project Mactan BESS Project Phase 2 Jbay BESS Project Phase 2		20 20 20 20 20 20 20 20 20 20 20 20 20 2	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar Tabango, Leyte Toledo City, Cebu San Carlos City, Negros Occidental	Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024 May 2025 May 2025 May 2025
Toledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Compostela BESS Project Cabbayog BESS Project Tabango BESS Project Tabango BESS Project Phase 2 Toledo BESS Project Phase 2 San Carlos BESS Project Mactan BESS Project	Sub-Total BESS	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar Tabango, Leyte Toledo City, Cebu San Carlos City, Negros Occidental Mactan, Cebu	Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024 May 2025 May 2025 May 2025 May 2025
Toledo BESS Project Jbay BESS Project Drmoc BESS Project Drmoc BESS Project Phase 2 Tabango BESS Project Dingle BESS Project Compostela BESS Project Cabbayog BESS Project Tabango BESS Project Tabango BESS Project Phase 2 Toledo BESS Project Phase 2 San Carlos BESS Project Mactan BESS Project	Sub-Total BESS TOTAL COMMITTED	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Ubay, Bohol Ormoc, Leyte Ormoc, Leyte Tabango, Leyte Dingle, Iloilo Samboan, Cebu Compostela, Cebu Nabas, Antique Brgy. Carayman, Calbayog, Samar Tabango, Leyte Toledo City, Cebu San Carlos City, Negros Occidental Mactan, Cebu	Jul 2023 Jul 2023 Jul 2023 Dec 2023 Sep 2023 Sep 2023 Sep 2024 Sep 2024 May 2025 May 2025 May 2025 May 2025

Table 2: Private Sector Initiated Power Projects in Visayas as of 28 February 2023

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
OIL	INDICAT	IVE POWER PLANTS	
95.2MW In-Island Baseload Plant Bohol DPP Capacity Expansion* Sub-Total Oil	95.2 30 125.2	Brgy. Imelda, Ubay, Bohol Brgy. Dampas, Tagbilaran City, Bohol	Feb 2024 TBD
GEOTHERMAL			0004
Mahanagdong Geothermal Brine Optimization Plant* Dauin GPP	36 40	Barangay Tongonan, Ormoc City, Leyte Dauin, Negros Oriental	2024 2025
Sub-Total Geothermal	76	Daum, Negros Orientat	LOLJ
HYDRO			
Lower Himogaan HEPP	4	Sagay, Negros Occidental	2026
Malugo HEPP Maskaa HEPP*	6	Silay City, Negros Occidental	2027
Maslog HEPP* Upper Taft HEPP	40 14.1	Maslog, Eastern Samar Taft, Eastern Samar	2028 2028
Ilog HEPP*	21.6	Mabinay, Negros Occidental	2028
Aklan Pumped-Storage HEPP*	300	Malay, Aklan	2030
Casapa HEPP*	10	Maslog, Eastern Samar	2030
Sub-Total Hydro	395.7		
SOLAR			
Biliran SPP	20	Biliran, Biliran	Dec 2023
SAMELCO II – Paranas SPP	1	Paranas, Samar	Dec 2023
San Miguel SPP*	80 17 F	San Miguel, Leyte	Dec 2023
Bohol SPP Cadiz City SPP*	17.5 56	Ubay, Bohol Cadiz City, Negros Occidental	Jan 2024 Dec 2024
Calatrava SPP	137.48	Calatrava, Negros Occidental	Dec 2024
Manapla SPP	120.295	Manapla, Negros Occidental	Mar 2024
Medellin SPP*	240	Medellin, Cebu	Dec 2024
Victorias SPP	85.925	Victorias City, Negros Occidental	Mar 2024
Bacolod City SPP II	130	Bacolod City, Negros Occidental	Aug 2025
Vista Alegre SPP*	41.6	Bacolod City, Negros Occidental	Oct 2025
All Home All Builders Bacolod SPP	0.24	Negros Occidental, Bacolod, Mandalagan	Dec 2026
Dagohoy SPP	20.622	Dagohoy, Bohol	Dec 2027
Sub-Total Solar	950.662		
San Isidro WPP*	200	San Isidro, Northern Samar	Jun 2024
East Panay Offshore WPP	1000	Offshore of Iloilo and Guimaras	Oct 2026
Pulupandan WPP*	50	Pulupandan, Negros Occidental	Feb 2026
Iloilo 1 WPP	54	Batad & San Dionisio, Iloilo	Dec 2027
Tanjay WPP*	50	Bais, Negros Oriental	Jan 2027
Bohol I (Ubay) WPP*	100	Ubay, Alicia, Mabini, Bohol	Dec 2029
Guimaras Strait II WPP*	600	Offshore of Negros Occidental and Iloilo Provinces	Dec 2029
Guimaras 1 Offshore WPP	582	Offshore and Onshore of Guimaras	Dec 2029
Guimaras – Negros Occidental Offshore WPP	768	Onshore and Offshore of Negros Occidental and	Dec 2029
Guimaras Onshore WPP	100	Offshore of Guimaras Buenavista, San Lorenzo, Sibunag, and New	Dec 2029
	200	Valencia, Guimaras	200 2020
Iloilo-Guimaras Offshore WPP	996	Offshore of Iloilo, Negros Occidental, and Guimaras, onshore of Iloilo	Dec 2029
Sub-Total Wind	4,500		
BATTERY			
Cadiz Energy Storage Project	50	Cadiz City, Negros Occidental	Jun 2024
Naga (Pandora) BESS*	20	Naga City, Cebu	Sep 2024
Ormoc Energy Storage Project Padayon (CPPC) Energy Storage Project	50 20	Ormoc, Leyte Broy, Frmita, Coby, City	Oct 2024 Dec 2024
Tongonan ESS	20 30	Brgy. Ermita, Cebu City Kananga, Leyte	Dec 2024 Dec 2024
Southern Negros ESS	30	Valencia, Negros Oriental	Dec 2024
BESS Installation - PDPP	9.35	Brgy. Tabugon, Dingle, Iloilo City	Sep 2025

X

K

Ų

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
BESS Installation – PB 104	2	Tapal Wharf, Ubay, Bohol	Sep 2025
Bohol BESS Power Plant	20	Brgy. Dampas, Tagbilaran City, Bohol	Sep 2022
Compostela BESS	7.5	Compostela, Cebu	2025
Daanbantayan Energy Storage Power Project	30	Daanbantayan, Cebu	Mar 2025
Enerhiya Delas Islas I BESS Project	15	Amlan, Negros Oriental	Dec 2025
Enerhiya Delas Islas II BESS Project	15	Ormoc, Leyte	Dec 2025
Enerhiya Delas Islas III BESS Project	15	Compostela, Cebu	Dec 2025
Northern Negros Energy Storage System	30	Bago City and Murcia, Negros Occidental	Dec 2025
Panay BESS Power Plant	40	Brgy. Tabugon, Dingle, Iloilo City	Sep 2025
San Isidro BESS Project	200	Brgy. Palanit, San Isidro, Northern Samar	Dec 2026
Toledo BESS	20	Toledo City, Cebu	2026
Dingle BESS	20	Dingle City, Iloilo	2027
Tabango BESS	7.5	Tabango City, Leyte	2027
Tinampa-an Energy Storage	50	Brgy. Tinampa-an, Cadiz City, Negros Occidental	Jun 2027
Ubay BESS	20	Ubay City, Bohol	TBD
Calbayog BESS Power Plant	30	Calbayog, Samar	TBD
Pandora 2 Integrated Energy Storage Project*	42	Barangay Colon, Naga City, Cebu	TBD
Sta. Barbara BESS Project*	20	Sta. Barbara, Iloilo	TBD
Santander Energy Storage Project	30	Santander Cebu	TBD
Santa Rita Energy Storage Project	30	Santa Rita, Samar	TBD
Tabango Energy Storage Project	30	Tabango, Leyte	TBD
Sub-Total Battery	873.35		
TOTAL INDICATIVE	6,920.912		
TOTAL INDICATIVE W/O BATTERY	6,047.562		

* with SIS

Table 3: Private Sector Initiated Power Projects in Mindanao as of 28 February 2023

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
		COMMITTED POWER PLANTS	
COAL			
Misamis Oriental 2 x 135 MW Circulating	270	PHIVIDEC Industrial Estate, Villanueva, Misamis	Mar 2027
Fluidized Bed CFPP Thermal*		Oriental	
Sub-Total Coal	270		
OIL-BASED			
SPC DPP*	11.04	Libudon Road, Lower Dawan, Mati City, Davao	TBD
		Oriental	
Sub-Total Oil-Based	11.04		
HYDRO			
Lake Mainit HEPP*	24.9	Jabonga, Agusan del Norte	Apr 2023
Alamada HEPP	3	Alamada, North Cotabato	Jun 2023
Sipangpang HEPP	1.8	Cantilan, Surigao del Sur	Jun 2023
Maramag HEPP	2.04	Maramag, Bukidnon	Apr 2023
Liangan HEPP*	18	Bacolod, Lanao del Norte	Apr 2023
Siguil HEPP	14.5	Maasim, Sarangani	Jun 2023
Tagpangi HEPP	1.7	Vitali, Zamboanga City	Dec 2023
Osmeña HEPP	1	Governor Generoso, Davao Oriental	Dec 2023
Gakaon HEPP	2.23	Impasugong, Bukidnon	Dec 2024
Maladugao (Upper Cascade) HEPP	8.4	Kalilangan & Wao, Bukidnon	Jan 2025
Titunod HEPP	3.6	Kolambogan, Lanao del Norte	Dec 2024
Malitbog HEPP	3.7	Malitbog, Bukidnon	Sep 2024
Silo-o HEPP	3.7	Malitbog, Bukidnon	Oct 2024
Mat-i 1 HEPP	4.85	Claveria, Cagayan de Oro	Nov 2025
Clarin HEPP	6.9	Clarin, Misamis Occidental	Nov 2025

Proposed Generation Facility /	Capacity	Location	Commissioning
Name of the Project	(MW)	Location	Year
Mangima HEPP	12	Manolo Fortich, Bukidnon	Jan 2025
Sub-Total Hydro	100.32		
BIOMASS			
CSCCI 10 MW Biomass Cogeneration Plant	10	Matalam, North Cotabato	Nov 2023
DSCCI 10 MW Biomass Cogeneration Plant	10	Hagonoy, Davao del Sur	Dec 2023
6 MW Biomass Power Plant Project	6	Aurora, Zamboanga del Sur	Dec 2023
Sub-Total Biomass	26		
SOLAR			
General Santos Solar Power Project	120	General Santos City, South Cotabato	Dec 2023
Sub-Total Biomass	120		
BESS			
Pitogo BESS	60	Sitio Pitogo, Brgy. Sinunuc, Zamboanga City	Oct 2023
Sangali BESS	20	Sitio Malasugat, Brgy. Sangali, Zamboanga City	Aug 2023
Malita BESS	20	Malita, Davao	Jul 2023
Maco BESS	20	Maco, Davao	Jul 2023
Villanueva BESS	20	Tagoloan, Misamis Oriental	Jul 2023
Jasaan BESS	20	Jasaan, Misamis Oriental	Jul 2023
Tagum BESS	20	Tagum, Davao del Norte	2023
Aurora BESS	20	Brgy. Cabilinan, Aurora, Zamboanga del Sur	May 2025
Tagoloan BESS Project Phase 2	20	Tagoloan, Misamis Oriental	May 2025
Placer BESS Project	20	Placer, Surigao del Norte	May 2025
Maramag BESS Project	20	Maramag, Bukidnon	May 2025
General Santos BESS Project	20	General Santos, South Cotabato	Jul 2023
Sub-Total BESS	280		
TOTAL COMMITTED	819.36		
TOTAL COMMITTED W/O BESS	539.60		

X

* with SIS

Proposed Generation Facility / Name of the Project	Capacity (MW)	Location	Commissioning Year
		INDICATIVE POWER PLANTS	
COAL			
San Ramon Power, Inc. CFPP Station Sub-Total Coal	120 1 120	ZamboEcozone, Brgy. Talisayan, Zambanga City	Jun 2026
NATURAL GAS			
GNPower Kauswagan LNG CCPP Sub-Total Natural Gas	600 6 00	Barangay Tacub, Kauswagan, Lanao del Norte	Dec 2028
HYDRO			
Pulanai River HEPP	15	Valencia, Bukidnon	2025
Maladugao River (Lower Cascade) HEPP	15	Kalilangan and Wao, Bukidnon	2025
Bubunawan HEPP	32	Baungon, Bukidnon	2025
Limbatangon HEPP	9	Cagayan de Oro City, Misamis Occidental	2025
Casauman HEPP*	34	Manay, Davao Oriental	2026
Cateel HEPP*	16	Baganga, Davao Oriental	2026
Davao HEPP	140	Davao City	2027
Culaman HEPP*	10	Manolo Fortich, Bukidnon	2025
Agus III HEPP	225	Pantar, Lanao del Norte & Baloi/Saguiaran, Lanao del Sur	2029
South Pulangi HEPP*	250	Damulog, Bukidnon	2031
Sub-Total Hydro	746.7		
BIOMASS			
12 MW BMP Project	12	Manolo Fortich, Bukidnon	Dec 2023
50 MW BMP Project	50	Surigao del Sur	Jun 2026
Sub-Total Biomass	62		
SOLAR			
Camiguin SPP	5	Liong, Guinsiliban Camiguin Province, Mindanao	Jul 2023

Capacity (MW)	Location	Commissioning Year
1.56	San Vicente, Sumilao, Bukidnon	Aug 2023
21.6	Villanueva, Misamis Oriental	Dec 2024
5.6	La Libertad and Dapitan, Zamboanga del Norte	Jun 2025
33.76		
36	Surigao City, San Francisco, Malimono, Sison, Placer	Sep 2026
100 136	Mainit, Surigao del Norte and Lake Mainit	Dec 2029
50	Kibawe, Bukidnon	Oct 2024
20	Toril, Davao	Sep 2025
48	Lawis, Sta. Ana, Nasipit, Agusan del Norte	Sep 2025
118		
1,816.46		
1.698.46		
	(MW) 1.56 21.6 5.6 33.76 36 100 136 50 20 48 118 1,816.46	InstructionLocation1.56San Vicente, Sumilao, Bukidnon21.6Villanueva, Misamis Oriental5.6La Libertad and Dapitan, Zamboanga del Norte33.7636Surigao City, San Francisco, Malimono, Sison, Placer and Mainit, Surigao del Norte100Mainit, Surigao del Norte and Lake Mainit13650Kibawe, Bukidnon 20 Toril, Davao48Lawis, Sta. Ana, Nasipit, Agusan del Norte1181,816.46

* with SIS

Appendix 5 – Summary of Asset Lives

Category	Description	Life (Years)	Notes
	Lattice steel tower line	50	
Transmission Lines	Wood pole line	25	
	Concrete pole line	50	
	Steel pole line	50	
	Submarine HVDC	50	
Power Cables	Submarine HVAC	50	
	Underground HVAC	50	
	Transformers 500 kV	45	N-1 Security
	Transformers 230 kV	35	Without N-1 Security
	Transformers 230 kv	45	With N-1 Security
	Transformars 11E W	35	Without N-1 Security
Outdoor Substations – MEAs	Transformers 115 kV	45	With N-1 Security
	Reactors	35	
	Capacitor	40	
	Outdoor switch bays	40	500 kV, 230 kV, 138/115 kV, 69 kV outdoor assemblies (see Note 1)
Outdoor Substations – Individual equipment	Circuit breakers	40	500 kV, 230 kV, 138/115 kV, 69 kV
	500 kV GIS switch bay	45	
Indoor GIS Substations	230 kV GIS switch bay	45	
	115 kV GIS switch bay	45	
	Protective relays and controls	15	
Substations Secondary	Metering equipment	30	
	RTUs, SCADA systems	15	
c · ··	OPGW links	50	
Communications	PLC links	35	
System Control	1	15	

Notes: 1. A switchgear bay includes the primary equipment, bus works, foundations, equipment supports, and other structures, protective and control equipment and cabling directly associated with the bay.

Appendix 6 – Power Restoration Highway

System blackout occurred when all generation in the grid has ceased and the entire power system has shutdown. The process of recovery from total system blackout using a generating unit with the capability to start and synchronize with the power system without an external power supply is called Black Start. Power plants that serve as Black Start Provider must have a black start capability or the ability to go from a shutdown condition to an operating condition within a specified period without feedback power from the grid and to start delivering power to the sections of the grid such as generating plants and critical loads.

Black start generators must be capable of starting themselves quickly without the need for external power supply from the grid, with sufficient real (MW) and reactive power (MVAR) to energize transmission lines and restart other generators. They must also be able to control frequency as well as a voltage which can sustain a self-reliant operation for at least 12 hours and extend power within 30 minutes.

There are four sub-grids in Luzon including Metro Manila sub-grid (LRCC), Northern Luzon sub-grid (NLACC), Central Luzon sub-grid (CLACC), and Southern Tagalog sub-grid (STACC). Both Visayas and Mindanao have five (5) sub-grids. In Visayas, these includes Panay, Negros, Cebu, Bohol, Leyte-Samar, while in Mindanao, these are Zamboanga ACC, Iligan Cagayan ACC, Butuan ACC, Davao ACC and General Santos ACC. Each sub-grid has its own designated power restoration highway and must have at least two black start service providers, in case the other fails to operate. However, at present there are subgrids that have a deficiency in Black Start Providers, hence, NGCP continuously encourages other generating units to participate as Black Start Providers for the improvement of the restoration time.

It is also crucial to monitor and ensure the health of the breakers as well as protective relays which are connected to all restoration highway (substation/power plant). Similarly, setting and proper coordination of power plant protection relays and grid protection relays could prevent any undesired tripping during occurrence of system disturbance.

Furthermore, installation of NDMEs are also necessary for real-time monitoring, recording of system disturbance and retrieving of fault data remotely particularly in these critical substations as part of the restoration highway. Similarly, installation of PQAs could be used effectively for online monitoring of power quality problems such as generating current/voltage harmonics beyond power system network limits, voltage imbalance and fluctuation and harmonic resonance in the substations and power plant which are part of the power restoration highway.



Figure 1: Luzon Power Restoration Highway

Figure 2: Visayas Power Restoration Highway



Figure 3: Mindanao Power Restoration Highway

Appendix 7 – Abbreviations and Acronyms

GEAP Green Energy Auction	ent Plan ment Assistance Program	KSPC MAEC PCPC	KEPCO SPC Power Corporation Mirae Asia Power Corporation
ESMAP Energy Sector Manager GEAP Green Energy Auction			-
GEAP Green Energy Auction	neni Assisiance Frogram		Palm Concepcion Power Corporation
	Drogram	PEDC	Panay Energy Development Corporation
	•	QPPL	
NREP National Renewable En			Quezon Power Philippines Limited
PDP Power Development Pr	•	RP Energy	Redondo Peninsula Energy
PEP Philippine Energy Plan		SCPC	Sta. Clara Power Corporation
TDP Transmission Developm	nent Plan	SEC	Sarangani Energy Corporation
Electricity Market		SBPL	San Buenaventura Power Ltd. Company
	/ Market Operator of the	SBSSEC	Sapang Balen Solar Sustainable Energy Corporation
Philippines		SMCPC	San Miguel Consolidated Power Corporation
PEMC Philippine Electricity M		TAREC	Trans-Asia Renewable Energy Corporation
WESM Wholesale Electricity S	pot Market	Power Plants	
Government Agencies		BESS	Battery Energy Storage System
ERC Energy Regulatory Com		ССРР	Combined Cycle Power Plant
DICT Department of Informa		CFPP	Coal-Fired Power Plant
Communications Techr		BPP	Biomass Power Plant
DENR Department of Environ	mental and Natural	DPP	Diesel Power Plant
Resources		GPP	Geothermal Power Plant
DOE Department of Energy		HEPP	Hydro Electric Power Plant
LLDA Laguna Lake Developm		LNG	Liquified Natural Gas
MGB Mines and Geosciences		NGPP	Natural Gas Power Plant
NEDA National Economic & D		RE	Renewable Energy
Government-owned and Controlled Corporat	ion and other	SPP	Solar Power Plant
Government Agencies			
NPC National Power Corpor		WPP	Wind Power Plant
	Liabilities Management	Solar PV VRE	Solar Photovoltaic
TransCo National Transmission	Corporation	Private Distribution	Variable Renewable Energy
SPUG Small Power Utilities G	roup	AEC	
Legal, Environmental and Other Requiremen	ts	BEZ	Angeles Electric Corporation
BCMS Business Continuity Ma	anagement System		Balamban Enerzone Corporation
EMS Environmental Manage	ement System	BLCI	Bohol Light Company, Inc.
EPIRA Electric Power Industry	/ Reform Act	CEPALCO	Cagayan Electric Power & Light Company
IMS Integrated Managemen	nt System	CLARK ELECTRIC	Clark Electric Distribution Corporation
ISMS Information Security a	nd Management	DLPC	Davao Light and Power Company
System		MECO	Mactan Electric Company, Inc.
ISO International Organiza	tion for Standardization	MERALCO	Manila Electric Company
IRR Implementing Rules ar	nd Regulation	MEZ	Mactan Enerzone Corporation
OHSMS Occupational Health ar	nd Safety Management	MORE	MORE Electric and Power Corporation
System		TEI	Tarlac Electric Inc.
PGC Philippine Grid Code		VECO	Visayan Electric Company, Inc.
PQMS Power Quality Manager	ment System	Regions/Areas/Grid	
QMS Quality Management S	ystem	CALABARZON	Cavite, Laguna, Batangas, Rizal, and Quezon
RE Law Renewable Energy Law		CBD	Central Business District
Other Companies		CLACC	Central Luzon sub-grid
BEI Bohol Enterprises, Inc.		LA	Lanao Area
BSTC Bukidnon Sub transmis		NCC	New Clark City
IFC International Finance (NCR	National Capital Region
NREL National Renewable En	-	NCMA	North Central Mindanao Area
USAID United States Agency f		NLACC	Northern Luzon sub-grid
Development		NEACC	North Eastern Mindanao Area
Power Generating Companies		NWMA	North Western Mindanao Area
CEDC Cebu Energy Developm	ent Corporation		
EERI Excellent Energy Resou		SEMA	South Eastern Mindanao Area
		SOCCSKSARGEN	South Cotabato, Cotabato, Sultan Kudarat, Sarangani &
55			Gen Santos
EWC Energy World Corporat		CDD	Could Decad Decoenties
EWC Energy World Corporat FGHPC First Gen Hydro Power		SRP	South Road Properties
EWCEnergy World CorporatFGHPCFirst Gen Hydro PowerGN PowerGeneral Nakar Power	Corporation	SWMA	South Western Mindanao Area
EWC Energy World Corporat FGHPC First Gen Hydro Power	Corporation on		

	ASAI	Ancillary Services Availability Indicator	ESAMELCO	Eastern Samar Electric Cooperative, Inc.
	ASAPP	Ancillary Service Agreement Procurement Plan	FICELCO	First Catanduanes Electric Cooperative, Inc.
	CA	Connection Assets	GUIMELCO	Guimaras Electric Cooperative
	CC/RSTC	Connection Charges/Residual Subtransmission Charges	ILECO II	Iloilo II Electric Cooperative, Inc.
	ConA	Congestion Availability	ILECO III	Iloilo III Electric Cooperative, Inc.
	CSI	Customer Satisfaction Indicator		-
	FD	Final Determination	INEC	Ilocos Norte Electric Cooperative, Inc.
	FIT	Feed-in-Tariff	ISECO	Ilocos Sur Electric Cooperative, Inc.
			KAELCO	Kalinga-Apayao Electric Cooperative, Inc.
	FLC	Frequency Limit Compliance	LEYECO II	Leyte II Electric Cooperative, Inc.
	FOT / 100 Ckt-km	Frequency of Tripping per 100 circuit-km	LEYECO III	Leyte III Electric Cooperative, Inc.
	OATS	Open Access Transmission Service	LEYECO IV	Leyte IV Electric Cooperative, Inc.
	PA	Provisional Authority	LEYECO V	Leyte V Electric Cooperative, Inc.
	PBR	Performance-Based Regulation	LUELCO	La Union Electric Cooperative, Inc.
	PIS	Performance Incentive Scheme	MORESCO I	Misamis Oriental I Electric Cooperative
	RAB	Regulatory Asset Base	MOELCI I	Misamis Occidental I Electric Cooperative, Inc.
	RSTA	Residual Subtransmission Assets	MORESCO I	Misamis Oriental I Electric Cooperative, Inc.
	RTWR	Rules for Setting Transmission Wheeling Rate	NEECO II A2	Nueva Ecija II Electric Cooperative, Inc. – Area 2
	SA	System Availability	NONECO	Northern Negros Electric Cooperative, Inc.
	SEIL	Std. Equipment Identification and Labeling	NORECO I	Negros Oriental I Electric Cooperative, Inc.
	SISI	System Interruption Severity Index	NORECO II	Negros Oriental II Electric Cooperative, Inc.
	VLC	Voltage Limit Compliance VLC	NORDECO	Northern Davao Electric Cooperative
	Supply-Demand and	Investment	NORSAMELCO	
1	AAGCR	Annual Average Compounded Growth Rate		Northern Samar Electric Cooperative, Inc.
	CAPEX	Capital Expenditures	OMECO	Occidental Mindoro Electric Cooperative, Inc.
	CR	Contingency Reserve	ORMECO	Oriental Mindoro Electric Cooperative, Inc.
	DR	Dispatchable Reserve	PANELCO I	Pangasinan I Electric Cooperative
	GDP	Gross Domestic Product	PANELCO III	Pangasinan III Electric Cooperative, Inc.
	GRDP	Gross Regional Domestic Product	PELCO I	Pampanga I Electric Cooperative, Inc.
	LoLp	Loss of Load Probability	PELCO II	Pampanga II Electric Cooperative, Inc.
	SPD	-	PRESCO	Pampanga Rural Electric Service Cooperative, Inc.
1		System Peak Demand	PROSIELCO	Province of Siquijor Electric Cooperative, Inc.
4	Transmission Netwo		SAJELCO	San Jose City Electric Cooperative, Inc.
1		National Grid Corporation of the Philippines	SAMELCO I	Samar I Electric Cooperative, Inc.
4	Unit of Measure	Circuit bilemeter	SAMELCO II	Samar II Electric Cooperative, Inc.
	ckt-km	Circuit-kilometer	SIARELCO	Siargao Electric Cooperative, Inc.
	km	kilometer	SOCOTECO I	South Cotabato I Electric Cooperative, Inc.
	kV	kilo-Volt	SOLECO	Southern Leyte Electric Cooperative, Inc.
	MVA	Mega-Volt Ampere	TARELCO I	Tarlac I Electric Cooperative, Inc.
	MVAR	Mega-Volt Ampere Reactivef	TARELCO II	Tarlac II Electric Cooperative, Inc.
	MW	Mega-Watt	ZAMECO I	Zambales I Electric Cooperative
	UTS	Ultimate Tensile Strength	ZAMECO I	Zambales i Electric Cooperative
	Electric Cooperatives			
	ABRECO	Abra Electric Cooperative	ZAMCELCO	Zamboanga City Electric Cooperative, Inc.
	AKELCO	Aklan Electric Cooperative, Inc.	Transmission Syster	-
	ALECO	Albay Electric Cooperative, Inc.	AACGR	Average Annual Compounded Growth Rate
	ANTECO	Antique Electric Cooperative, Inc.	ACC	Area Control Center
	BANELCO	Bantayan Island Electric Cooperative, Inc.	ACSR	Aluminum Cable Steel Reinforced
	BATELEC II	Batangas II Electric Cooperative, Inc.	ACSR/AS	Aluminum Cable Steel Reinforced/Aluminum-clad Steel
	BENECO	Benguet Electric Cooperative, Inc.	AIS	Air Insulated Switchgear
	BILECO	Biliran Electric Cooperative, Inc.	APG	ASEAN Power Grid
	BOHECO I	Bohol I Electric Cooperative, Inc.	AS	Ancillary Service
	BOHECO II		ASPA	Ancillary Service Procurement Agreement
		Bohol II Electric Cooperative, Inc.	ASPP	Ancillary Services Procurement Plan
	CAGELCO I	Cagayan 1 Electric Cooperative, Inc.	ASAPP	Ancillary Service Agreement Procurement Plan
	CAPELCO	Capiz Electric Cooperative, Inc.	AVC	Automatic Voltage Control
	CASURECO IV	Camarines Sur IV Electric Cooperative, Inc.	BMS	Battery Monitoring System
	CEBECO I	Cebu I Electric Cooperative, Inc.	BRCC	Backup Regional Control Center
	CEBECO II	Cebu II Electric Cooperative, Inc.	CAES	Compressed Air Energy Storage
	CEBECO III	Cebu III Electric Cooperative, Inc.	CBM	Condition-Based Maintenance
	CELCO	Camotes Electric Cooperative, Inc.	CCMS	Central Control and Monitoring System
	CENECO	Central Negros Electric Cooperative, Inc.		
	CENPELCO	Central Pangasinan Electric Cooperative, Inc.	COMS	Centralized Online Monitoring System
	DORELCO	Don Orestes Romuladez Elect Cooperative, Inc.	CREZ	Competitive Renewable Energy Zone
			CSP	Competitive Selection Process

K

UX.

CTS	Cable Terminal Station	PAN	Planned Activity Notice
CS	Converter Station	PCB	Power Circuit Breaker
DC	Double Circuit	PLC	Powerline Carrier
DC1	Double Circuit Transmission Line First Stringing	PMU	Phasor Measurement Unit
DC2	Double Circuit Transmission Line Second Stringing	PQA	Power Quality Analyzer
DER	Distribution Energy Resources	PSH	Pumped-Storage Hydropower
DS/ES	Disconnecting/Earthing Switches	PST	Philippine Standard Time
DU	Distribution Utility	RPA	Remotely Piloted Aircraft
EAM	Enterprise Asset Management	RCC	Regional Control Center
EHV	Extra High Voltage	RCOA	Retail Competition and Open Access
EMS	Energy Management System	RFMS	Remote Fiber Monitoring System
ERS	Emergency Restoration System	ROW	Right-of-Way
ES	Electrode Station	RPS	Renewable Portfolio Standards
ESS	Energy Storage System	RTD	Real-time Dispatch
ETC	Expected Target Completion	RTU	Remote Terminal Unit
ICT	Information and Communications Technology	TNP	Transmission Network Provider
FACTS	Flexible AC Transmission System	STATCOM	Static Synchronous Compensator
FESS	Flywheel Energy Storage System	SACS	Substation Automation Control System
FMS	Facilities Management System	SCADA	Supervisory Control and Data Acquisition
GEOP	Green Energy Option	SCADA-EMS	Data Acquisition-Energy Management System
GIS	Gas Insulated Switchgear	SDH	Synchronous Digital Hierarchy
HVE	High Voltage Equipment	SIPS	Systems Integrity Protection Scheme
HVAC	High Voltage Alternating Current	SIS	System Impact Study
HVDC	High Voltage Direct Current	SO	System Operations
ICT	Information and Communications Technology	SO-MO	System Operator-Market Operator
IP	Internet Protocol	SPD	System Peak Demand
IPP	Independent Power Producer	SPS	Special Protection System
LES	Load-End Substations	SP-SC	Steel Pole Single Circuit
MBSC	Microprocessor-Based Substation Control	SP-DC	Steel Pole Double Circuit
MCM	Thousand Circular Mills	SS	Substation
NDME	Network Disturbance Monitoring Equipment	ST-SC	Steel Tower Single Circuit
NMS	Network Management System	ST-DC	Steel Tower Double Circuit
NSO	National System Operations	SWS	Switching Station
OHTL	Overhead Transmission Line	TL	Transmission Line
0 & M	Operation and Maintenance	UAV	Unmanned Aerial Vehicle
OPGW	Optical Power Ground Wire	WSD	Wind Speed Design
OTN	Optical Transport Network	ZWG	Zone Working Group
PABX	Private Automatic Branch Exchange	WBG	World Bank Group
PSIPP	Private Section Initiated Power Projects	WMSP	WESM Metering Service Provider

X

X

Appendix 8 – Contact Details

For all inquiries regarding the TDP, you may contact any of the following:

Eufemio C. Buluran, Jr. Transmission Planning Senior Manager Luzon System Planning Division Planning and Engineering ecbuluran@ngcp.ph

Michael R. Baylosis

Transmission Planning Manager Visayas System Planning Division Planning and Engineering *mrbaylosis@ngcp.ph*

Fernando S. Javier

Transmission Planning Senior Manager Mindanao System Planning Division Planning and Engineering *fsjavier@ngcp.ph*

Names

Germiniano S. Caseria III O&M Planning Manager (OIC) O&M Planning Division Operation and Maintenance *gscaseria@ngcp.ph*

Armando C. Nicdao

MASM Manager (OIC) Metering Assets and Services Management Division Operation and Maintenance *acnicdao@ngcp.ph*

Mark Angelo A. Silvala

Infrastructure and Integrated Development Manager (OIC) Infrastructure and Integrated Development Division System Operations *masilvala@ngcp.ph*